Suppr超能文献

腰部竖脊肌疲劳后慢跑运动学。

Jogging kinematics after lumbar paraspinal muscle fatigue.

机构信息

University of Virginia, Charlottesville, VA 22908-0159, USA.

出版信息

J Athl Train. 2009 Sep-Oct;44(5):475-81. doi: 10.4085/1062-6050-44.5.475.

Abstract

CONTEXT

Isolated lumbar paraspinal muscle fatigue causes lower extremity and postural control deficits.

OBJECTIVE

To describe the change in body position during gait after fatiguing lumbar extension exercises in persons with recurrent episodes of low back pain compared with healthy controls.

DESIGN

Case-control study.

SETTING

Motion analysis laboratory.

PATIENTS OR OTHER PARTICIPANTS

Twenty-five recreationally active participants with a history of recurrent episodes of low back pain, matched by sex, height, and mass with 25 healthy controls.

INTERVENTION(S): We measured 3-dimensional lower extremity and trunk kinematics before and after fatiguing isometric lumbar paraspinal exercise.

MAIN OUTCOME MEASURE(S): Measurements were taken while participants jogged on a custom-built treadmill surrounded by a 10-camera motion analysis system.

RESULTS

Group-by-time interactions were observed for lumbar lordosis and trunk angles (P < .05). A reduced lumbar spine extension angle was noted, reflecting a loss of lordosis and an increase in trunk flexion angle, indicating increased forward trunk lean, in healthy controls after fatiguing lumbar extension exercise. In contrast, persons with a history of recurrent low back pain exhibited a slight increase in spine extension, indicating a slightly more lordotic position of the lumbar spine, and a decrease in trunk flexion angles after fatiguing exercise. Regardless of group, participants experienced, on average, greater peak hip extension after lumbar paraspinal fatigue.

CONCLUSIONS

Small differences in response may represent a necessary adaptation used by persons with recurrent low back pain to preserve gait function by stabilizing the spine and preventing inappropriate trunk and lumbar spine positioning.

摘要

背景

孤立性腰旁肌疲劳会导致下肢和姿势控制能力下降。

目的

与健康对照组相比,描述反复腰痛患者在进行疲劳性腰椎伸展运动后步态时的身体位置变化。

设计

病例对照研究。

地点

运动分析实验室。

患者或其他参与者

25 名有反复发作腰痛病史的休闲活跃参与者,按性别、身高和体重与 25 名健康对照组相匹配。

干预措施

我们在进行疲劳等长腰椎旁肌运动前后测量了 3 维下肢和躯干运动学。

主要观察指标

参与者在定制跑步机上慢跑时,在 10 个摄像机运动分析系统周围进行测量。

结果

观察到腰椎前凸和躯干角度的组间时间交互作用(P <.05)。健康对照组在疲劳性腰椎伸展运动后,腰椎伸展角度减小,反映出前凸减小和躯干前屈角度增加,表明前向躯干倾斜增加。相比之下,有反复发作腰痛病史的患者在疲劳后腰椎伸展角度略有增加,表明腰椎的前凸位置略有增加,而躯干前屈角度减小。无论组间如何,参与者在腰椎旁肌疲劳后平均经历更大的髋关节伸展峰值。

结论

反应的微小差异可能代表反复腰痛患者为保持步态功能而进行的必要适应性改变,即稳定脊柱并防止不适当的躯干和腰椎定位。

相似文献

1
Jogging kinematics after lumbar paraspinal muscle fatigue.
J Athl Train. 2009 Sep-Oct;44(5):475-81. doi: 10.4085/1062-6050-44.5.475.
2
Jogging gait kinetics following fatiguing lumbar paraspinal exercise.
J Electromyogr Kinesiol. 2009 Dec;19(6):e458-64. doi: 10.1016/j.jelekin.2008.09.003. Epub 2008 Dec 16.
3
Inter-joint coordination and the flexion-relaxation phenomenon among adults with low back pain during bending.
Gait Posture. 2021 Mar;85:164-170. doi: 10.1016/j.gaitpost.2021.02.001. Epub 2021 Feb 5.
5
Back and hip extensor muscles fatigue in healthy subjects: task-dependency effect of two variants of the Sorensen test.
Eur Spine J. 2008 Dec;17(12):1721-6. doi: 10.1007/s00586-008-0782-y. Epub 2008 Sep 24.
6
The effect of lumbar fatigue on the ability to sense a change in lumbar position. A controlled study.
Spine (Phila Pa 1976). 1999 Jul 1;24(13):1322-7. doi: 10.1097/00007632-199907010-00009.
7
Back and hip extensor activities during trunk flexion/extension: effects of low back pain and rehabilitation.
Arch Phys Med Rehabil. 2000 Jan;81(1):32-7. doi: 10.1016/s0003-9993(00)90218-1.
10
Creep and fatigue development in the low back in static flexion.
Spine (Phila Pa 1976). 2009 Aug 1;34(17):1873-8. doi: 10.1097/BRS.0b013e3181aa6a55.

引用本文的文献

1
Hip biomechanics in patients with low back pain, what do we know? A systematic review.
BMC Musculoskelet Disord. 2024 May 28;25(1):415. doi: 10.1186/s12891-024-07463-5.
2
Running Footwear and Impact Peak Differences in Recreational Runners.
Biology (Basel). 2022 May 26;11(6):818. doi: 10.3390/biology11060818.
3
Do people with low back pain walk differently? A systematic review and meta-analysis.
J Sport Health Sci. 2022 Jul;11(4):450-465. doi: 10.1016/j.jshs.2022.02.001. Epub 2022 Feb 10.
4
Injury Prevention, Safe Training Techniques, Rehabilitation, and Return to Sport in Trail Runners.
Arthrosc Sports Med Rehabil. 2022 Jan 28;4(1):e151-e162. doi: 10.1016/j.asmr.2021.09.032. eCollection 2022 Jan.
5
Quantitative and Qualitative Running Gait Analysis through an Innovative Video-Based Approach.
Sensors (Basel). 2021 Apr 23;21(9):2977. doi: 10.3390/s21092977.
6
Relationship between Lower Limb Kinematics and Upper Trunk Acceleration in Recreational Runners.
J Healthc Eng. 2020 Jan 16;2020:8973010. doi: 10.1155/2020/8973010. eCollection 2020.
7
Intervertebral disc kinematics in active duty Marines with and without lumbar spine pathology.
JOR Spine. 2019 Jun 17;2(2):e1057. doi: 10.1002/jsp2.1057. eCollection 2019 Jun.
8
Exercise-induced trunk fatigue decreases double poling performance in well-trained cross-country skiers.
Eur J Appl Physiol. 2018 Oct;118(10):2077-2087. doi: 10.1007/s00421-018-3938-4. Epub 2018 Jul 13.
9
Kinematic changes during a marathon for fast and slow runners.
J Sports Sci Med. 2012 Mar 1;11(1):77-82. eCollection 2012.

本文引用的文献

1
Jogging gait kinetics following fatiguing lumbar paraspinal exercise.
J Electromyogr Kinesiol. 2009 Dec;19(6):e458-64. doi: 10.1016/j.jelekin.2008.09.003. Epub 2008 Dec 16.
2
Proximal gait adaptations in medial knee OA.
J Orthop Res. 2009 Jan;27(1):78-83. doi: 10.1002/jor.20718.
3
Trunk position influences the kinematics, kinetics, and muscle activity of the lead lower extremity during the forward lunge exercise.
J Orthop Sports Phys Ther. 2008 Jul;38(7):403-9. doi: 10.2519/jospt.2008.2634. Epub 2008 Apr 15.
4
Neuromuscular consequences of low back pain and core dysfunction.
Clin Sports Med. 2008 Jul;27(3):449-62, ix. doi: 10.1016/j.csm.2008.02.005.
5
A kinematics and kinetic comparison of overground and treadmill running.
Med Sci Sports Exerc. 2008 Jun;40(6):1093-100. doi: 10.1249/MSS.0b013e3181677530.
6
The effect of trunk flexion on able-bodied gait.
Gait Posture. 2008 May;27(4):653-60. doi: 10.1016/j.gaitpost.2007.08.009. Epub 2007 Oct 24.
7
The effect of trunk-flexed postures on balance and metabolic energy expenditure during standing.
Spine (Phila Pa 1976). 2007 Jul 1;32(15):1605-11. doi: 10.1097/BRS.0b013e318074d515.
8
Deficits in neuromuscular control of the trunk predict knee injury risk: a prospective biomechanical-epidemiologic study.
Am J Sports Med. 2007 Jul;35(7):1123-30. doi: 10.1177/0363546507301585. Epub 2007 Apr 27.
9
The effects of core proprioception on knee injury: a prospective biomechanical-epidemiological study.
Am J Sports Med. 2007 Mar;35(3):368-73. doi: 10.1177/0363546506297909. Epub 2007 Jan 31.
10
Muscle length and lengthening velocity in voluntary crouch gait.
Gait Posture. 2007 Oct;26(4):532-8. doi: 10.1016/j.gaitpost.2006.11.208. Epub 2007 Jan 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验