Wilson J Anthony, Bender Andreas, Kaya Taner, Clemons Paul A
Chemical Biology Program, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA.
J Chem Inf Model. 2009 Oct;49(10):2231-41. doi: 10.1021/ci900190z.
Despite considerable efforts, description of molecular shape is still largely an unresolved problem. Given the importance of molecular shape in the description of spatial interactions in crystals or ligand-target complexes, this is not a satisfying state. In the current work, we propose a novel application of alpha shapes to the description of the shapes of small molecules. Alpha shapes are parametrized generalizations of the convex hull. For a specific value of alpha, the alpha shape is the geometric dual of the space-filling model of a molecule, with the parameter alpha allowing description of shape in varying degrees of detail. To date, alpha shapes have been used to find macromolecular cavities and to estimate molecular surface areas and volumes. We developed a novel methodology for computing molecular shape characteristics from the alpha shape. In this work, we show that alpha-shape descriptors reveal aspects of molecular shape that are complementary to other shape descriptors and that accord well with chemists' intuition about shape. While our implementation of alpha-shape descriptors is not computationally trivial, we suggest that the additional shape characteristics they provide can be used to improve and complement shape-analysis methods in domains such as crystallography and ligand-target interactions. In this communication, we present a unique methodology for computing molecular shape characteristics from the alpha shape. We first describe details of the alpha-shape calculation, an outline of validation experiments performed, and a discussion of the advantages and challenges we found while implementing this approach. The results show that, relative to known shape calculations, this method provides a high degree of shape resolution with even small changes in atomic coordinates.
尽管付出了巨大努力,但分子形状的描述在很大程度上仍是一个未解决的问题。鉴于分子形状在描述晶体或配体 - 靶标复合物中的空间相互作用方面的重要性,这种情况并不令人满意。在当前的工作中,我们提出了α形状在小分子形状描述中的一种新应用。α形状是凸包的参数化推广。对于特定的α值,α形状是分子空间填充模型的几何对偶,参数α允许以不同程度的细节描述形状。迄今为止,α形状已被用于寻找大分子空腔以及估计分子表面积和体积。我们开发了一种从α形状计算分子形状特征的新方法。在这项工作中,我们表明α形状描述符揭示了分子形状的一些方面,这些方面与其他形状描述符互补,并且与化学家对形状的直觉非常吻合。虽然我们对α形状描述符的实现并非计算上轻而易举,但我们认为它们提供的额外形状特征可用于改进和补充晶体学和配体 - 靶标相互作用等领域的形状分析方法。在本通讯中,我们提出了一种从α形状计算分子形状特征的独特方法。我们首先描述α形状计算的细节、所进行的验证实验概述,以及在实施此方法时发现的优点和挑战。结果表明,相对于已知的形状计算,该方法即使在原子坐标有微小变化时也能提供高度的形状分辨率。