Tolonen Andrew C, Chilaka Amanda C, Church George M
Department of Genetics, Harvard Medical School, Boston, MA 02115 USA.
Mol Microbiol. 2009 Dec;74(6):1300-13. doi: 10.1111/j.1365-2958.2009.06890.x. Epub 2009 Sep 22.
Summary Microbial cellulose degradation is a central part of the global carbon cycle and has great potential for the development of inexpensive, carbon-neutral biofuels from non-food crops. Clostridium phytofermentans has a repertoire of 108 putative glycoside hydrolases to break down cellulose and hemicellulose into sugars, which this organism then ferments primarily to ethanol. An understanding of cellulose degradation at the molecular level requires learning the different roles of these hydrolases. In this study, we show that interspecific conjugation with Escherichia coli can be used to transfer a plasmid into C. phytofermentans that has a resistance marker, an origin of replication that can be selectively lost, and a designed group II intron for efficient, targeted chromosomal insertions without selection. We applied these methods to disrupt the cphy3367 gene, which encodes the sole family 9 glycoside hydrolase (GH9) in the C. phytofermentans genome. The GH9-deficient strain grew normally on some carbon sources such as glucose, but had lost the ability to degrade cellulose. Although C. phytofermentans upregulates the expression of numerous enzymes to break down cellulose, this process thus relies upon a single, key hydrolase, Cphy3367.
摘要 微生物纤维素降解是全球碳循环的核心部分,对于利用非粮食作物开发廉价的碳中和生物燃料具有巨大潜力。嗜热栖热梭菌拥有108种假定的糖苷水解酶,可将纤维素和半纤维素分解为糖类,该生物体随后主要将其发酵为乙醇。要在分子水平上理解纤维素降解,需要了解这些水解酶的不同作用。在本研究中,我们表明与大肠杆菌进行种间接合可用于将质粒导入嗜热栖热梭菌,该质粒具有抗性标记、可选择性丢失的复制起点以及用于高效、靶向染色体插入且无需筛选的设计II型内含子。我们应用这些方法破坏了cphy3367基因,该基因编码嗜热栖热梭菌基因组中唯一的9家族糖苷水解酶(GH9)。GH9缺陷型菌株在一些碳源(如葡萄糖)上正常生长,但失去了降解纤维素的能力。尽管嗜热栖热梭菌上调了许多分解纤维素的酶的表达,但这个过程依赖于单一的关键水解酶Cphy3367。