Nelson Cassandra E, Rogowski Artur, Morland Carl, Wilhide Joshua A, Gilbert Harry J, Gardner Jeffrey G
Department of Biological Sciences, University of Maryland - Baltimore County, Baltimore, Maryland, USA.
Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, UK.
Mol Microbiol. 2017 Apr;104(2):294-305. doi: 10.1111/mmi.13625. Epub 2017 Feb 28.
Degradation of polysaccharides forms an essential arc in the carbon cycle, provides a percentage of our daily caloric intake, and is a major driver in the renewable chemical industry. Microorganisms proficient at degrading insoluble polysaccharides possess large numbers of carbohydrate active enzymes (CAZymes), many of which have been categorized as functionally redundant. Here we present data that suggests that CAZymes that have overlapping enzymatic activities can have unique, non-overlapping biological functions in the cell. Our comprehensive study to understand cellodextrin utilization in the soil saprophyte Cellvibrio japonicus found that only one of four predicted β-glucosidases is required in a physiological context. Gene deletion analysis indicated that only the cel3B gene product is essential for efficient cellodextrin utilization in C. japonicus and is constitutively expressed at high levels. Interestingly, expression of individual β-glucosidases in Escherichia coli K-12 enabled this non-cellulolytic bacterium to be fully capable of using cellobiose as a sole carbon source. Furthermore, enzyme kinetic studies indicated that the Cel3A enzyme is significantly more active than the Cel3B enzyme on the oligosaccharides but not disaccharides. Our approach for parsing related CAZymes to determine actual physiological roles in the cell can be applied to other polysaccharide-degradation systems.
多糖的降解在碳循环中形成了一个重要环节,提供了我们日常热量摄入的一部分,并且是可再生化学工业的主要驱动力。擅长降解不溶性多糖的微生物拥有大量的碳水化合物活性酶(CAZymes),其中许多酶已被归类为功能冗余。在此,我们提供的数据表明,具有重叠酶活性的CAZymes在细胞中可能具有独特的、非重叠的生物学功能。我们对土壤腐生菌日本纤维弧菌中纤维糊精利用情况的全面研究发现,在生理环境中,四种预测的β-葡萄糖苷酶中只有一种是必需的。基因缺失分析表明,只有cel3B基因产物对于日本纤维弧菌中高效利用纤维糊精是必不可少的,并且该基因持续高水平表达。有趣的是,在大肠杆菌K-12中单独表达β-葡萄糖苷酶能使这种非纤维素分解细菌完全能够将纤维二糖作为唯一碳源利用。此外,酶动力学研究表明,Cel3A酶对寡糖的活性明显高于Cel3B酶,但对二糖则不然。我们解析相关CAZymes以确定其在细胞中实际生理作用的方法可应用于其他多糖降解系统。