Suppr超能文献

对日本纤维弧菌的系统分析解决了预测的β-葡萄糖苷酶冗余问题,并确定了其重要的生理功能。

Systems analysis in Cellvibrio japonicus resolves predicted redundancy of β-glucosidases and determines essential physiological functions.

作者信息

Nelson Cassandra E, Rogowski Artur, Morland Carl, Wilhide Joshua A, Gilbert Harry J, Gardner Jeffrey G

机构信息

Department of Biological Sciences, University of Maryland - Baltimore County, Baltimore, Maryland, USA.

Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, UK.

出版信息

Mol Microbiol. 2017 Apr;104(2):294-305. doi: 10.1111/mmi.13625. Epub 2017 Feb 28.

Abstract

Degradation of polysaccharides forms an essential arc in the carbon cycle, provides a percentage of our daily caloric intake, and is a major driver in the renewable chemical industry. Microorganisms proficient at degrading insoluble polysaccharides possess large numbers of carbohydrate active enzymes (CAZymes), many of which have been categorized as functionally redundant. Here we present data that suggests that CAZymes that have overlapping enzymatic activities can have unique, non-overlapping biological functions in the cell. Our comprehensive study to understand cellodextrin utilization in the soil saprophyte Cellvibrio japonicus found that only one of four predicted β-glucosidases is required in a physiological context. Gene deletion analysis indicated that only the cel3B gene product is essential for efficient cellodextrin utilization in C. japonicus and is constitutively expressed at high levels. Interestingly, expression of individual β-glucosidases in Escherichia coli K-12 enabled this non-cellulolytic bacterium to be fully capable of using cellobiose as a sole carbon source. Furthermore, enzyme kinetic studies indicated that the Cel3A enzyme is significantly more active than the Cel3B enzyme on the oligosaccharides but not disaccharides. Our approach for parsing related CAZymes to determine actual physiological roles in the cell can be applied to other polysaccharide-degradation systems.

摘要

多糖的降解在碳循环中形成了一个重要环节,提供了我们日常热量摄入的一部分,并且是可再生化学工业的主要驱动力。擅长降解不溶性多糖的微生物拥有大量的碳水化合物活性酶(CAZymes),其中许多酶已被归类为功能冗余。在此,我们提供的数据表明,具有重叠酶活性的CAZymes在细胞中可能具有独特的、非重叠的生物学功能。我们对土壤腐生菌日本纤维弧菌中纤维糊精利用情况的全面研究发现,在生理环境中,四种预测的β-葡萄糖苷酶中只有一种是必需的。基因缺失分析表明,只有cel3B基因产物对于日本纤维弧菌中高效利用纤维糊精是必不可少的,并且该基因持续高水平表达。有趣的是,在大肠杆菌K-12中单独表达β-葡萄糖苷酶能使这种非纤维素分解细菌完全能够将纤维二糖作为唯一碳源利用。此外,酶动力学研究表明,Cel3A酶对寡糖的活性明显高于Cel3B酶,但对二糖则不然。我们解析相关CAZymes以确定其在细胞中实际生理作用的方法可应用于其他多糖降解系统。

相似文献

4
Polysaccharide degradation systems of the saprophytic bacterium Cellvibrio japonicus.
World J Microbiol Biotechnol. 2016 Jul;32(7):121. doi: 10.1007/s11274-016-2068-6. Epub 2016 Jun 4.
5
Systems analysis of the glycoside hydrolase family 18 enzymes from characterizes essential chitin degradation functions.
J Biol Chem. 2018 Mar 9;293(10):3849-3859. doi: 10.1074/jbc.RA117.000849. Epub 2018 Jan 24.
6
Genetic and enzymatic characterization of Amy13E from reclassifies it as a cyclodextrinase also capable of α-diglucoside degradation.
Appl Environ Microbiol. 2024 Jan 24;90(1):e0152123. doi: 10.1128/aem.01521-23. Epub 2023 Dec 12.
8
Microbe Profile: : living the sweet life via biomass break-down.
Microbiology (Reading). 2024 Apr;170(3). doi: 10.1099/mic.0.001450.
9
High cellulolytic potential of the Ktedonobacteria lineage revealed by genome-wide analysis of CAZymes.
J Biosci Bioeng. 2021 Jun;131(6):622-630. doi: 10.1016/j.jbiosc.2021.01.008. Epub 2021 Mar 4.
10
Comparison of catalytic properties of multiple β-glucosidases of Trichoderma reesei.
Appl Microbiol Biotechnol. 2016 Jun;100(11):4959-68. doi: 10.1007/s00253-016-7342-x. Epub 2016 Feb 5.

引用本文的文献

1
Transcriptomic analyses of bacterial growth on fungal necromass reveal different microbial community niches during degradation.
Appl Environ Microbiol. 2024 Oct 23;90(10):e0106224. doi: 10.1128/aem.01062-24. Epub 2024 Sep 12.
2
Current models in bacterial hemicellulase-encoding gene regulation.
Appl Microbiol Biotechnol. 2024 Dec;108(1):39. doi: 10.1007/s00253-023-12977-4. Epub 2024 Jan 4.
3
Genetic and enzymatic characterization of Amy13E from reclassifies it as a cyclodextrinase also capable of α-diglucoside degradation.
Appl Environ Microbiol. 2024 Jan 24;90(1):e0152123. doi: 10.1128/aem.01521-23. Epub 2023 Dec 12.
4
Unifying themes and distinct features of carbon and nitrogen assimilation by polysaccharide-degrading bacteria: a summary of four model systems.
Appl Microbiol Biotechnol. 2021 Nov;105(21-22):8109-8127. doi: 10.1007/s00253-021-11614-2. Epub 2021 Oct 6.
6
Complete Genome Sequences of Cellvibrio japonicus Strains with Improved Growth When Using α-Diglucosides.
Microbiol Resour Announc. 2019 Oct 31;8(44):e01077-19. doi: 10.1128/MRA.01077-19.
9
Systems analysis of the glycoside hydrolase family 18 enzymes from characterizes essential chitin degradation functions.
J Biol Chem. 2018 Mar 9;293(10):3849-3859. doi: 10.1074/jbc.RA117.000849. Epub 2018 Jan 24.

本文引用的文献

1
Polysaccharide degradation systems of the saprophytic bacterium Cellvibrio japonicus.
World J Microbiol Biotechnol. 2016 Jul;32(7):121. doi: 10.1007/s11274-016-2068-6. Epub 2016 Jun 4.
2
Transcriptomic analysis of lignocellulosic biomass degradation by the anaerobic fungal isolate Orpinomyces sp. strain C1A.
Biotechnol Biofuels. 2015 Dec 8;8:208. doi: 10.1186/s13068-015-0390-0. eCollection 2015.
3
In-Frame Deletions Allow Functional Characterization of Complex Cellulose Degradation Phenotypes in Cellvibrio japonicus.
Appl Environ Microbiol. 2015 Sep 1;81(17):5968-75. doi: 10.1128/AEM.00847-15. Epub 2015 Jun 26.
4
Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism.
Nature. 2015 Jan 8;517(7533):165-169. doi: 10.1038/nature13995.
6
Range of cell-wall alterations enhance saccharification in Brachypodium distachyon mutants.
Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):14601-6. doi: 10.1073/pnas.1414020111. Epub 2014 Sep 22.
8
A complex gene locus enables xyloglucan utilization in the model saprophyte Cellvibrio japonicus.
Mol Microbiol. 2014 Oct;94(2):418-33. doi: 10.1111/mmi.12776. Epub 2014 Sep 17.
9
Do rumen Bacteroidetes utilize an alternative mechanism for cellulose degradation?
mBio. 2014 Aug 5;5(4):e01401-14. doi: 10.1128/mBio.01401-14.
10
The devil lies in the details: how variations in polysaccharide fine-structure impact the physiology and evolution of gut microbes.
J Mol Biol. 2014 Nov 25;426(23):3851-65. doi: 10.1016/j.jmb.2014.06.022. Epub 2014 Jul 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验