Mets David G, Meyer Barbara J
Howard Hughes Medical Institute, University of California-Berkeley, Berkeley, CA 94720-3204, USA.
Cell. 2009 Oct 2;139(1):73-86. doi: 10.1016/j.cell.2009.07.035. Epub 2009 Sep 24.
Meiotic crossover (CO) recombination facilitates evolution and accurate chromosome segregation. CO distribution is tightly regulated: homolog pairs receive at least one CO, CO spacing is nonrandom, and COs occur preferentially in short genomic intervals called hotspots. We show that CO number and distribution are controlled on a chromosome-wide basis at the level of DNA double-strand break (DSB) formation by a condensin complex composed of subunits from two known condensins: the C. elegans dosage compensation complex and mitotic condensin II. Disruption of any subunit of the CO-controlling condensin dominantly changes DSB distribution, and thereby COs, and extends meiotic chromosome axes. These phenotypes are cosuppressed by disruption of a chromosome axis element. Our data implicate higher-order chromosome structure in the regulation of CO recombination, provide a model for the rapid evolution of CO hotspots, and show that reshuffling of interchangeable molecular parts can create independent machines with similar architectures but distinct biological functions.
减数分裂交叉(CO)重组促进进化和精确的染色体分离。CO的分布受到严格调控:同源染色体对至少接受一次CO,CO间距是非随机的,并且CO优先发生在称为热点的短基因组区间内。我们表明,CO的数量和分布在全染色体水平上由一种凝聚素复合物在DNA双链断裂(DSB)形成阶段进行控制,该复合物由来自两种已知凝聚素的亚基组成:秀丽隐杆线虫剂量补偿复合物和有丝分裂凝聚素II。控制CO的凝聚素的任何亚基的破坏都会显著改变DSB分布,从而改变CO,并延长减数分裂染色体轴。这些表型通过染色体轴元件的破坏而被共抑制。我们的数据表明高阶染色体结构参与了CO重组的调控,为CO热点的快速进化提供了一个模型,并表明可互换分子部件的重新组合可以创造出具有相似结构但不同生物学功能的独立机器。