Smith Loren E, Davidson W Sean
Department of Pathology and Laboratory Medicine, University of Cincinnati, 2120 East Galbraith Road, Cincinnati, OH 45237-0507, USA.
Biochim Biophys Acta. 2010 Jan;1801(1):64-9. doi: 10.1016/j.bbalip.2009.09.012. Epub 2009 Sep 24.
Recent models of lipid-free apolipoprotein A-I, including a cross-link/homology model and an X-ray crystal structure have identified two potential functionally relevant "patches" on the protein surface. The first is a hydrophobic surface patch composed of leucine residues 42, 44, 46, and 47 and the second a negatively charged patch composed of glutamic acid residues 179, 191, and 198. To determine if these domains play a functional role, these surface patches were disrupted by site-directed mutagenesis and the bacterially expressed mutants were compared with respect to their ability to bind lipid and stimulate ABCA1-mediated cholesterol efflux. It was found that neither patch plays a significant functional role in the ability of apoA-I to accept cholesterol in an ABCA1-dependent manner, but that the hydrophobic patch did affect the ability of apoA-I to clear DMPC liposomes. Interestingly, contrary to previous predictions, disruption of the hydrophobic surface patch enhanced the lipid binding ability of apoA-I. The hydrophobic surface patch may be important to the structural stability of lipid-free apoA-I or may be a necessary permissive structural element for lipid binding.