Suppr超能文献

磁共振弹性成像中的剪切模量分解算法。

Shear modulus decomposition algorithm in magnetic resonance elastography.

机构信息

Department of Mathematics, Konkuk University, Seoul 143-701, Korea.

出版信息

IEEE Trans Med Imaging. 2009 Oct;28(10):1526-33. doi: 10.1109/TMI.2009.2019823.

Abstract

Magnetic resonance elastography (MRE) is an imaging modality capable of visualizing the elastic properties of an object using magnetic resonance imaging (MRI) measurements of transverse acoustic strain waves induced in the object by a harmonically oscillating mechanical vibration. Various algorithms have been designed to determine the mechanical properties of the object under the assumptions of linear elasticity, isotropic and local homogeneity. One of the challenging problems in MRE is to reduce the noise effects and to maintain contrast in the reconstructed shear modulus images. In this paper, we propose a new algorithm designed to reduce the degree of noise amplification in the reconstructed shear modulus images without the assumption of local homogeneity. Investigating the relation between the measured displacement data and the stress wave vector, the proposed algorithm uses an iterative reconstruction formula based on a decomposition of the stress wave vector. Numerical simulation experiments and real experiments with agarose gel phantoms and human liver data demonstrate that the proposed algorithm is more robust to noise compared to standard inversion algorithms and stably determines the shear modulus.

摘要

磁共振弹性成像(MRE)是一种利用磁共振成像(MRI)测量物体中横向声应变波的方法,该方法可以可视化物体的弹性特性,这些应变波是由物体中谐波机械振动引起的。已经设计了各种算法来确定物体在假设的线性弹性、各向同性和局部均匀性下的力学性质。MRE 中的一个具有挑战性的问题是减少噪声影响并在重建的剪切模量图像中保持对比度。在本文中,我们提出了一种新算法,该算法旨在在不假设局部均匀性的情况下降低重建剪切模量图像中的噪声放大程度。通过研究测量位移数据与应力波矢量之间的关系,所提出的算法使用基于应力波矢量分解的迭代重建公式。琼脂糖凝胶体模和人体肝脏数据的数值模拟实验和实际实验表明,与标准反演算法相比,所提出的算法对噪声更稳健,并且能够稳定地确定剪切模量。

相似文献

1
Shear modulus decomposition algorithm in magnetic resonance elastography.
IEEE Trans Med Imaging. 2009 Oct;28(10):1526-33. doi: 10.1109/TMI.2009.2019823.
2
Quantitative 3D magnetic resonance elastography: Comparison with dynamic mechanical analysis.
Magn Reson Med. 2017 Mar;77(3):1184-1192. doi: 10.1002/mrm.26207. Epub 2016 Mar 26.
3
Requirements for accurate estimation of shear modulus by magnetic resonance elastography: A computational comparative study.
Comput Methods Programs Biomed. 2020 Aug;192:105437. doi: 10.1016/j.cmpb.2020.105437. Epub 2020 Mar 5.
4
Analytical Minimization-Based Regularized Subpixel Shear-Wave Tracking for Ultrasound Elastography.
IEEE Trans Ultrason Ferroelectr Freq Control. 2019 Feb;66(2):285-296. doi: 10.1109/TUFFC.2018.2885460. Epub 2018 Dec 7.
5
A regularization-free elasticity reconstruction method for ultrasound elastography with freehand scan.
Biomed Eng Online. 2014 Sep 7;13:132. doi: 10.1186/1475-925X-13-132.
6
Quantitative imaging of nonlinear shear modulus by combining static elastography and shear wave elastography.
IEEE Trans Ultrason Ferroelectr Freq Control. 2012 Apr;59(4):833-9. doi: 10.1109/TUFFC.2012.2262.
7
Development of three-dimensional integral-type reconstruction formula for magnetic resonance elastography.
Int J Comput Assist Radiol Surg. 2021 Nov;16(11):1947-1956. doi: 10.1007/s11548-021-02517-8. Epub 2021 Oct 25.
8
Modeling shear modulus distribution in magnetic resonance elastography with piecewise constant level sets.
Magn Reson Imaging. 2012 Apr;30(3):390-401. doi: 10.1016/j.mri.2011.09.015. Epub 2012 Jan 14.

本文引用的文献

1
Elastography: Imaging the elastic properties of soft tissues with ultrasound.
J Med Ultrason (2001). 2002 Dec;29(4):155. doi: 10.1007/BF02480847.
2
Algebraic Helmholtz inversion in planar magnetic resonance elastography.
Phys Med Biol. 2008 Jun 21;53(12):3147-58. doi: 10.1088/0031-9155/53/12/005. Epub 2008 May 21.
3
Evaluation of a material parameter extraction algorithm using MRI-based displacement measurements.
IEEE Trans Ultrason Ferroelectr Freq Control. 2000;47(6):1575-81. doi: 10.1109/58.883546.
4
Tissue elasticity reconstruction using linear perturbation method.
IEEE Trans Med Imaging. 1996;15(3):299-313. doi: 10.1109/42.500139.
5
Assessment of hepatic fibrosis with magnetic resonance elastography.
Clin Gastroenterol Hepatol. 2007 Oct;5(10):1207-1213.e2. doi: 10.1016/j.cgh.2007.06.012.
7
Shear modulus reconstruction in dynamic elastography: time harmonic case.
Phys Med Biol. 2006 Aug 7;51(15):3697-721. doi: 10.1088/0031-9155/51/15/007. Epub 2006 Jul 12.
8
Magnetic resonance elastography of the breast: correlation of signal intensity data with viscoelastic properties.
Invest Radiol. 2005 Jul;40(7):412-20. doi: 10.1097/01.rli.0000166940.72971.4a.
9
Viscoelastic shear properties of in vivo breast lesions measured by MR elastography.
Magn Reson Imaging. 2005 Feb;23(2):159-65. doi: 10.1016/j.mri.2004.11.060.
10
Spatio-temporal directional filtering for improved inversion of MR elastography images.
Med Image Anal. 2003 Dec;7(4):465-73. doi: 10.1016/s1361-8415(03)00038-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验