Suppr超能文献

棘皮木霉对不同钙磷水平的响应导致草酸钙生物矿化。

Calcium oxalate biomineralization by Piloderma fallax in response to various levels of calcium and phosphorus.

机构信息

University of Northern British Columbia, Prince George, British Columbia, Canada.

出版信息

Appl Environ Microbiol. 2009 Nov;75(22):7079-85. doi: 10.1128/AEM.00325-09. Epub 2009 Sep 25.

Abstract

Piloderma fallax is an ectomycorrhizal fungus commonly associated with several conifer and hardwood species. We examined the formation of calcium oxalate crystals by P. fallax in response to calcium (0.0, 0.1, 0.5, 1, and 5 mM) and phosphorus (0.1 and 6 mM) additions in modified Melin-Norkrans agar medium. Both calcium and phosphorus supplementation significantly affected the amount of calcium oxalate formed. More calcium oxalate was formed at high P levels. Concentrations of soluble oxalate in the fungus and medium were higher at low P levels. There was a strong positive linear relationship between Ca level and calcium oxalate but only under conditions of phosphorus limitation. Calcium oxalate crystals were identified as the monohydrate form (calcium oxalate monohydrate [COM] whewellite) by X-ray diffraction analysis. Prismatic, styloid, and raphide forms of the crystals, characteristic COM, were observed on the surface of fungal hyphae by scanning electron microscopy. P. fallax may be capable of dissolving hyphal calcium oxalate under conditions of limited Ca. The biomineralization of calcium oxalate by fungi may be an important step in the translocation and cycling of Ca and P in soil.

摘要

易生根皮孔菌是一种外生菌根真菌,通常与几种针叶树和阔叶树种有关。我们研究了易生根皮孔菌在改良的 Melin-Norkrans 琼脂培养基中对钙(0.0、0.1、0.5、1 和 5mM)和磷(0.1 和 6mM)添加的反应中草酸钙晶体的形成。钙和磷的补充都显著影响草酸钙的形成量。在高磷水平下形成更多的草酸钙。在低磷水平下,真菌和培养基中可溶草酸盐的浓度更高。在磷限制条件下,Ca 水平与草酸钙之间存在很强的正线性关系。通过 X 射线衍射分析鉴定草酸钙晶体为一水合物形式(草酸钙一水合物[COM] 尿酸)。扫描电子显微镜观察到真菌菌丝表面有棱柱形、棒状和针状晶体,这是 COM 的特征。在钙有限的情况下,易生根皮孔菌可能能够溶解菌丝体中的草酸钙。真菌对草酸钙的生物矿化可能是土壤中钙和磷迁移和循环的重要步骤。

相似文献

1
Calcium oxalate biomineralization by Piloderma fallax in response to various levels of calcium and phosphorus.
Appl Environ Microbiol. 2009 Nov;75(22):7079-85. doi: 10.1128/AEM.00325-09. Epub 2009 Sep 25.
2
The effect of ions at the surface of calcium oxalate monohydrate crystals on cell-crystal interactions.
Urol Res. 2004 May;32(2):117-23. doi: 10.1007/s00240-003-0391-5. Epub 2003 Dec 9.
3
The solubility of calcium oxalates explains some aspects of their underrepresentation in the oral cavity.
Arch Oral Biol. 2021 Jan;121:104965. doi: 10.1016/j.archoralbio.2020.104965. Epub 2020 Nov 2.
5
7
Calcium oxalate crystals in tomato and tobacco plants: morphology and in vitro interactions of crystal-associated macromolecules.
Chemistry. 2001 May 4;7(9):1881-8. doi: 10.1002/1521-3765(20010504)7:9<1881::aid-chem1881>3.0.co;2-i.
8
[In vitro effect of Hordeum vulgare on the crystallization of calcium oxalate monohydrate (whewellite)].
Ann Biol Clin (Paris). 2012 Nov-Dec;70(6):725-31. doi: 10.1684/abc.2012.0770.
9
Role of agglomeration in calcium oxalate monohydrate urolith development.
Nephron. 1992;61(2):145-50. doi: 10.1159/000186862.
10
Inhibition of the crystal growth and aggregation of calcium oxalate by elemental selenium nanoparticles.
Colloids Surf B Biointerfaces. 2009 Nov 1;74(1):366-9. doi: 10.1016/j.colsurfb.2009.07.038. Epub 2009 Aug 3.

引用本文的文献

2
Physiological mechanisms by which gypsum increases the growth and yield of Lentinula edodes.
Appl Microbiol Biotechnol. 2022 Apr;106(7):2677-2688. doi: 10.1007/s00253-022-11884-4. Epub 2022 Mar 26.
3
Screening of Fungi for Potential Application of Self-Healing Concrete.
Sci Rep. 2019 Feb 14;9(1):2075. doi: 10.1038/s41598-019-39156-8.
5
Bioweathering Potential of Cultivable Fungi Associated with Semi-Arid Surface Microhabitats of Mayan Buildings.
Front Microbiol. 2016 Feb 23;7:201. doi: 10.3389/fmicb.2016.00201. eCollection 2016.
7
Effect of Gamma Radiation on Zinc Tolerance Efficiency of Aspergillus terreus Thorn.
Curr Microbiol. 2016 Mar;72(3):248-58. doi: 10.1007/s00284-015-0944-1. Epub 2015 Nov 26.
8
Specificity of plant-microbe interactions in the tree mycorrhizosphere biome and consequences for soil C cycling.
Front Microbiol. 2014 Jun 3;5:261. doi: 10.3389/fmicb.2014.00261. eCollection 2014.
10
Mycorrhizal response to experimental pH and P manipulation in acidic hardwood forests.
PLoS One. 2012;7(11):e48946. doi: 10.1371/journal.pone.0048946. Epub 2012 Nov 8.

本文引用的文献

2
Biogeochemistry of oxalate in the antarctic cryptoendolithic lichen-dominated community.
Microb Ecol. 1993 May;25(3):305-19. doi: 10.1007/BF00171895.
3
Phosphorus uptake by pigeon pea and its role in cropping systems of the Indian subcontinent.
Science. 1990 Apr 27;248(4954):477-80. doi: 10.1126/science.248.4954.477.
4
Calcium oxalate: occurrence in soils and effect on nutrient and geochemical cycles.
Science. 1977 Dec 23;198(4323):1252-4. doi: 10.1126/science.198.4323.1252.
6
Decay of cacti and carbon cycling.
Naturwissenschaften. 2006 Mar;93(3):114-8. doi: 10.1007/s00114-005-0069-7. Epub 2006 Feb 2.
7
Calcium oxalate in plants: formation and function.
Annu Rev Plant Biol. 2005;56:41-71. doi: 10.1146/annurev.arplant.56.032604.144106.
9
Biomineralization in plants as a long-term carbon sink.
Naturwissenschaften. 2004 Apr;91(4):191-4. doi: 10.1007/s00114-004-0512-1. Epub 2004 Mar 13.
10
PHOSPHATE ACQUISITION.
Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:665-693. doi: 10.1146/annurev.arplant.50.1.665.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验