Suppr超能文献

粗糙表面的粘附接触:数值计算与解析理论的比较

Adhesive contact of rough surfaces: comparison between numerical calculations and analytical theories.

作者信息

Carbone G, Scaraggi M, Tartaglino U

机构信息

DIMeG - Politecnico di Bari, v.le Japigia 182, 70126 Bari, Italy.

出版信息

Eur Phys J E Soft Matter. 2009 Sep;30(1):65-74. doi: 10.1140/epje/i2009-10508-5. Epub 2009 Sep 26.

Abstract

The authors have employed a numerical procedure to analyse the adhesive contact between a soft elastic layer and a rough rigid substrate. The solution to the problem, which belongs to the class of the free boundary problems, is obtained by calculating Green's function which links the pressure distribution to the normal displacements at the interface. The problem is then formulated in the form of a Fredholm integral equation of the first kind with a logarithmic kernel. The boundaries of the contact area are calculated by requiring the energy of the system to be stationary. This methodology has been employed to study the adhesive contact between an elastic semi-infinite solid and a randomly rough rigid profile with a self-affine fractal geometry. We show that, even in the presence of adhesion, the true contact area still linearly depends on the applied load. The numerical results are then critically compared with the predictions of an extended version of Persson's contact mechanics theory, which is able to handle anisotropic surfaces, as 1D interfaces. It is shown that, for any given load, Persson's theory underestimates the contact area by about 50% in comparison with our numerical calculations. We find that this discrepancy is larger than for 2D rough surfaces in the case of adhesionless contact. We argue that this increased difference might be explained, at least partially, by considering that Persson's theory is a mean-field theory in spirit, so it should work better for 2D rough surfaces rather than for 1D rough surfaces. We also observe that the predicted value of separation is in agreement with our numerical results as well as the exponents of the power spectral density of the contact pressure distribution and of the elastic displacement of the solid. Therefore, we conclude that Persson's theory captures almost exactly the main qualitative behaviour of the rough contact phenomena.

摘要

作者采用了一种数值方法来分析软弹性层与粗糙刚性基底之间的粘附接触。该问题属于自由边界问题,通过计算将压力分布与界面处法向位移联系起来的格林函数来求解。然后将该问题表述为具有对数核的第一类弗雷德霍姆积分方程的形式。通过要求系统能量保持不变来计算接触区域的边界。该方法已被用于研究弹性半无限固体与具有自仿射分形几何形状的随机粗糙刚性轮廓之间的粘附接触。我们表明,即使存在粘附力,真实接触面积仍然与所施加的载荷呈线性关系。然后将数值结果与佩尔松接触力学理论扩展版本的预测进行了严格比较,该扩展版本能够处理各向异性表面,如一维界面。结果表明,对于任何给定的载荷,与我们的数值计算相比,佩尔松理论低估了接触面积约50%。我们发现,在无粘附接触的情况下,这种差异比二维粗糙表面的情况更大。我们认为,这种差异的增加至少可以部分地通过考虑佩尔松理论本质上是一种平均场理论来解释,因此它对二维粗糙表面的适用性应优于一维粗糙表面。我们还观察到,预测的分离值与我们的数值结果以及接触压力分布和固体弹性位移的功率谱密度指数一致。因此,我们得出结论,佩尔松理论几乎准确地捕捉了粗糙接触现象的主要定性行为。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验