Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218.
Proc Natl Acad Sci U S A. 2014 Mar 4;111(9):3298-303. doi: 10.1073/pnas.1320846111. Epub 2014 Feb 18.
At the molecular scale, there are strong attractive interactions between surfaces, yet few macroscopic surfaces are sticky. Extensive simulations of contact by adhesive surfaces with roughness on nanometer to micrometer scales are used to determine how roughness reduces the area where atoms contact and thus weakens adhesion. The material properties, adhesive strength, and roughness parameters are varied by orders of magnitude. In all cases, the area of atomic contact is initially proportional to the load. The prefactor rises linearly with adhesive strength for weak attractions. Above a threshold adhesive strength, the prefactor changes sign, the surfaces become sticky, and a finite force is required to separate them. A parameter-free analytic theory is presented that describes changes in these numerical results over up to five orders of magnitude in load. It relates the threshold adhesive strength to roughness and material properties, explaining why most macroscopic surfaces do not stick. The numerical results are qualitatively and quantitatively inconsistent with classical theories based on the Greenwood-Williamson approach that neglect the range of adhesion and do not include asperity interactions.
在分子尺度上,表面之间存在很强的吸引力,但很少有宏观表面具有粘性。通过对具有纳米到微米尺度粗糙度的粘性表面的接触进行广泛的模拟,可以确定粗糙度如何减小原子接触的面积,从而减弱附着力。通过数量级的变化来改变材料性能、附着力和粗糙度参数。在所有情况下,原子接触面积最初与负载成正比。对于较弱的吸引力,前因子与附着力呈线性关系上升。超过一定的附着力阈值后,前因子的符号发生变化,表面变得粘性,需要施加一个有限的力才能将它们分开。本文提出了一种无参数的解析理论,可以描述在多达五个数量级的负载范围内这些数值结果的变化。它将临界附着力与粗糙度和材料性能联系起来,解释了为什么大多数宏观表面不具有粘性。这些数值结果与基于忽略附着力范围且不包括凸起相互作用的 Greenwood-Williamson 方法的经典理论在定性和定量上都不一致。