Suppr超能文献

流感疫苗主动安全性监测:医疗保健理赔环境中的潜力。

Active influenza vaccine safety surveillance: potential within a healthcare claims environment.

作者信息

Brown Jeffrey S, Moore Kristen M, Braun M Miles, Ziyadeh Najat, Chan K Arnold, Lee Grace M, Kulldorff Martin, Walker Alexander M, Platt Richard

机构信息

Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care, Boston, MA 02215, USA.

出版信息

Med Care. 2009 Dec;47(12):1251-7. doi: 10.1097/MLR.0b013e3181b58b5c.

Abstract

BACKGROUND

Rapid safety assessment of novel vaccines, especially those targeted against pandemic influenza, is a public health priority.

OBJECTIVES

Assess the feasibility of using healthcare claims data to rapidly detect influenza vaccine adverse events using sequential analytic methods.

RESEARCH DESIGN

Retrospective pilot study simulating prospective surveillance using 6 cumulative monthly administrative claims data extracts. The first included encounters occurring in October; each subsequent extract included an additional month of encounters. Ten adverse events were evaluated, comparing postvaccination rates during the 2006-2007 influenza season to those expected based on rates observed in the prior season.

SUBJECTS

Members of a large, multistate health insurer who had a claim for influenza vaccination during the 2005-2006 or 2006-2007 influenza seasons.

MEASURES

The completeness of monthly claims extracts.

RESULTS

Most vaccinations and outcomes were identified early in the 2006-2007 season; about 50% of vaccinations and short latency events were identified in the second monthly data extract, which would typically become available by mid-December, and 80% of vaccinations and events were identified in the third extract. With respect to overall claims lag, approximately 90% of vaccinations and events were identified within 1 to 2 months after vaccination, regardless of vaccination month.

CONCLUSIONS

This study suggests that administrative claims data might contribute to same season influenza vaccine safety surveillance in large, defined populations, especially during a threat of pandemic influenza. Based on our previous work, we believe this method could be applied to multiple health plans' data to monitor a large portion of the US population.

摘要

背景

新型疫苗的快速安全性评估,尤其是针对大流行性流感的疫苗,是一项公共卫生重点工作。

目的

评估使用医疗保健理赔数据,通过序贯分析方法快速检测流感疫苗不良事件的可行性。

研究设计

回顾性试点研究,使用6个累积月度管理理赔数据提取物模拟前瞻性监测。第一个提取物包括10月份发生的就诊情况;后续每个提取物都增加一个月的就诊情况。评估了10种不良事件,将2006 - 2007年流感季节的接种后发生率与根据上一季节观察到的发生率预期的发生率进行比较。

研究对象

一家大型多州健康保险公司的成员,他们在2005 - 2006年或2006 - 2007年流感季节有流感疫苗接种理赔记录。

测量指标

月度理赔提取物的完整性。

结果

大多数疫苗接种和结果在2006 - 2007年季节早期被识别;约50%的疫苗接种和短潜伏期事件在第二个月度数据提取物中被识别,该提取物通常在12月中旬可用,80%的疫苗接种和事件在第三个提取物中被识别。关于总体理赔延迟,无论接种月份如何,约90%的疫苗接种和事件在接种后1至2个月内被识别。

结论

本研究表明,管理理赔数据可能有助于在大型特定人群中进行同季节流感疫苗安全性监测,尤其是在大流行性流感威胁期间。基于我们之前的工作,我们相信这种方法可应用于多个健康计划的数据,以监测美国大部分人口。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验