Suppr超能文献

人类与探索算法在伦敦塔测试中的表现比较。

Performance of humans vs. exploration algorithms on the Tower of London Test.

机构信息

Biorobotics Department, Fatronik Foundation, San Sebastian, Spain.

出版信息

PLoS One. 2009 Sep 29;4(9):e7263. doi: 10.1371/journal.pone.0007263.

Abstract

The Tower of London Test (TOL) used to assess executive functions was inspired in Artificial Intelligence tasks used to test problem-solving algorithms. In this study, we compare the performance of humans and of exploration algorithms. Instead of absolute execution times, we focus on how the execution time varies with the tasks and/or the number of moves. This approach used in Algorithmic Complexity provides a fair comparison between humans and computers, although humans are several orders of magnitude slower. On easy tasks (1 to 5 moves), healthy elderly persons performed like exploration algorithms using bounded memory resources, i.e., the execution time grew exponentially with the number of moves. This result was replicated with a group of healthy young participants. However, for difficult tasks (5 to 8 moves) the execution time of young participants did not increase significantly, whereas for exploration algorithms, the execution time keeps on increasing exponentially. A pre-and post-test control task showed a 25% improvement of visuo-motor skills but this was insufficient to explain this result. The findings suggest that naive participants used systematic exploration to solve the problem but under the effect of practice, they developed markedly more efficient strategies using the information acquired during the test.

摘要

伦敦塔测验(TOL)用于评估执行功能,其灵感来自于人工智能任务,用于测试解决问题的算法。在这项研究中,我们比较了人类和探索算法的表现。我们关注的不是绝对执行时间,而是执行时间如何随任务和/或移动次数而变化。这种在算法复杂度中使用的方法提供了人类和计算机之间的公平比较,尽管人类的速度要慢几个数量级。在简单任务(1 到 5 步)中,健康的老年人表现得就像使用有界内存资源的探索算法一样,即执行时间随移动次数呈指数增长。这一结果在一组健康的年轻参与者中得到了复制。然而,对于困难的任务(5 到 8 步),年轻参与者的执行时间并没有显著增加,而对于探索算法,执行时间仍在继续呈指数增长。一项前测和后测控制任务显示,视动技能提高了 25%,但这不足以解释这一结果。研究结果表明,天真的参与者使用系统探索来解决问题,但在实践的影响下,他们开发了更有效的策略,利用了在测试中获得的信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d9b/2748701/dc05d6e3a039/pone.0007263.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验