Division of Clinical Sciences, Telethon Institute for Child Health Research, Centre for Child Health Research, The University of Western Australia, Australia.
Respir Physiol Neurobiol. 2009 Dec 31;169(3):243-51. doi: 10.1016/j.resp.2009.09.012. Epub 2009 Sep 27.
The study aim was to establish how recruitment maneuvers (RMs) influence lung mechanics and to determine whether RMs produce lung injury. Healthy BALB/c mice were allocated to receive positive end-expiratory pressure (PEEP) at 2 or 6 cmH(2)O and volume- (20 or 40 mL/kg) or pressure-controlled (25 cmH(2)O) RMs every 5 or 75 min for 150 min. The low-frequency forced oscillation technique was used to measure respiratory input impedance. Large RMs resulting in peak airway opening pressures (P(ao))>30 cmH(2)O did not increase inflammatory response or affect transcutaneous oxygen saturation but significantly lowered airway resistance, tissue damping and tissue elastance; the latter changes are likely associated with the bimodal pressure-volume behavior observed in mice. PEEP increase alone and application of RMs producing peak P(ao) below 25 cmH(2)O did not prevent or reverse changes in lung mechanics; whereas frequent application of substantial RMs on top of elevated PEEP levels produced stable lung mechanics without signs of lung injury.
研究目的在于确定复张手法(RM)如何影响肺力学,并确定 RM 是否会导致肺损伤。将健康的 BALB/c 小鼠分配到接受呼气末正压(PEEP)为 2 或 6 cmH(2)O 和容量控制(20 或 40 mL/kg)或压力控制(25 cmH(2)O)RM,每 5 或 75 分钟进行一次,共 150 分钟。低频强迫振荡技术用于测量呼吸输入阻抗。导致气道峰开放压力(P(ao))>30 cmH(2)O 的大 RM 不会增加炎症反应或影响经皮血氧饱和度,但会显著降低气道阻力、组织阻尼和组织弹性;这些变化可能与在小鼠中观察到的双模态压力-容积行为有关。单独增加 PEEP 和应用 P(ao)峰值低于 25 cmH(2)O 的 RM 并不能预防或逆转肺力学的变化;然而,在较高的 PEEP 水平上频繁应用大量的 RM 可产生稳定的肺力学,而没有肺损伤的迹象。