Suppr超能文献

对人类剪接体蛋白SRm300的酵母同源物Cwc21进行系统表征。

A systematic characterization of Cwc21, the yeast ortholog of the human spliceosomal protein SRm300.

作者信息

Khanna May, Van Bakel Harm, Tang Xinyi, Calarco John A, Babak Tomas, Guo Grace, Emili Andrew, Greenblatt Jack F, Hughes Timothy R, Krogan Nevan J, Blencowe Benjamin J

机构信息

Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada.

出版信息

RNA. 2009 Dec;15(12):2174-85. doi: 10.1261/rna.1790509. Epub 2009 Sep 29.

Abstract

Cwc21 (complexed with Cef1 protein 21) is a 135 amino acid yeast protein that shares homology with the N-terminal domain of human SRm300/SRRM2, a large serine/arginine-repeat protein shown previously to associate with the splicing coactivator and 3'-end processing stimulatory factor, SRm160. Proteomic analysis of spliceosomal complexes has suggested a role for Cwc21 and SRm300 at the core of the spliceosome. However, specific functions for these proteins have remained elusive. In this report, we employ quantitative genetic interaction mapping, mass spectrometry of tandem affinity-purified complexes, and microarray profiling to investigate genetic, physical, and functional interactions involving Cwc21. Combined data from these assays support multiple roles for Cwc21 in the formation and function of splicing complexes. Consistent with a role for Cwc21 at the core of the spliceosome, we observe strong genetic, physical, and functional interactions with Isy1, a protein previously implicated in the first catalytic step of splicing and splicing fidelity. Together, the results suggest multiple functions for Cwc21/SRm300 in the splicing process, including an important role in the activation of splicing in association with Isy1.

摘要

Cwc21(与Cef1蛋白21复合)是一种含有135个氨基酸的酵母蛋白,与人SRm300/SRRM2的N端结构域具有同源性,SRm300/SRRM2是一种大型丝氨酸/精氨酸重复蛋白,先前已证明其与剪接共激活因子和3'端加工刺激因子SRm160相关。对剪接体复合物的蛋白质组学分析表明,Cwc21和SRm300在剪接体核心发挥作用。然而,这些蛋白质的具体功能仍不清楚。在本报告中,我们采用定量遗传相互作用图谱、串联亲和纯化复合物的质谱分析以及微阵列分析来研究涉及Cwc21的遗传、物理和功能相互作用。这些分析的综合数据支持Cwc21在剪接复合物形成和功能中的多种作用。与Cwc21在剪接体核心发挥作用一致,我们观察到它与Isy1存在强烈的遗传、物理和功能相互作用,Isy1是一种先前与剪接的第一步催化和剪接保真度相关的蛋白质。总之,结果表明Cwc21/SRm300在剪接过程中具有多种功能,包括与Isy1一起在剪接激活中发挥重要作用。

相似文献

1
A systematic characterization of Cwc21, the yeast ortholog of the human spliceosomal protein SRm300.
RNA. 2009 Dec;15(12):2174-85. doi: 10.1261/rna.1790509. Epub 2009 Sep 29.
3
Cwc21p promotes the second step conformation of the spliceosome and modulates 3' splice site selection.
Nucleic Acids Res. 2015 Mar 31;43(6):3309-17. doi: 10.1093/nar/gkv159. Epub 2015 Mar 3.
4
Spliceosomal proteomics in Trypanosoma brucei reveal new RNA splicing factors.
Eukaryot Cell. 2009 Jul;8(7):990-1000. doi: 10.1128/EC.00075-09. Epub 2009 May 8.
5
How Is Precursor Messenger RNA Spliced by the Spliceosome?
Annu Rev Biochem. 2020 Jun 20;89:333-358. doi: 10.1146/annurev-biochem-013118-111024. Epub 2019 Dec 9.
10
Structure of a yeast catalytic step I spliceosome at 3.4 Å resolution.
Science. 2016 Aug 26;353(6302):895-904. doi: 10.1126/science.aag2235. Epub 2016 Jul 21.

引用本文的文献

1
SRRM2 organizes splicing condensates to regulate alternative splicing.
Nucleic Acids Res. 2022 Aug 26;50(15):8599-8614. doi: 10.1093/nar/gkac669.
4
5
Mutagenesis of Snu114 domain IV identifies a developmental role in meiotic splicing.
RNA Biol. 2019 Feb;16(2):185-195. doi: 10.1080/15476286.2018.1561145. Epub 2019 Jan 23.
6
RES complex is associated with intron definition and required for zebrafish early embryogenesis.
PLoS Genet. 2018 Jul 3;14(7):e1007473. doi: 10.1371/journal.pgen.1007473. eCollection 2018 Jul.
7
The pre-mRNA retention and splicing complex controls expression of the Mediator subunit Med20.
RNA Biol. 2017 Oct 3;14(10):1411-1417. doi: 10.1080/15476286.2017.1294310. Epub 2017 Feb 17.
8
Genetics and biochemistry remain essential in the structural era of the spliceosome.
Methods. 2017 Aug 1;125:3-9. doi: 10.1016/j.ymeth.2017.01.006. Epub 2017 Jan 26.
10
Cwc21p promotes the second step conformation of the spliceosome and modulates 3' splice site selection.
Nucleic Acids Res. 2015 Mar 31;43(6):3309-17. doi: 10.1093/nar/gkv159. Epub 2015 Mar 3.

本文引用的文献

2
The spliceosome: design principles of a dynamic RNP machine.
Cell. 2009 Feb 20;136(4):701-18. doi: 10.1016/j.cell.2009.02.009.
3
Assembly of ribosomes and spliceosomes: complex ribonucleoprotein machines.
Curr Opin Cell Biol. 2009 Feb;21(1):109-18. doi: 10.1016/j.ceb.2009.01.003. Epub 2009 Jan 21.
5
A single SR-like protein, Npl3, promotes pre-mRNA splicing in budding yeast.
Mol Cell. 2008 Dec 5;32(5):727-34. doi: 10.1016/j.molcel.2008.11.013.
6
The SR protein family of splicing factors: master regulators of gene expression.
Biochem J. 2009 Jan 1;417(1):15-27. doi: 10.1042/BJ20081501.
7
Structure of the yeast Pml1 splicing factor and its integration into the RES complex.
Nucleic Acids Res. 2009 Jan;37(1):129-43. doi: 10.1093/nar/gkn894. Epub 2008 Nov 25.
8
An unusual RNA recognition motif acts as a scaffold for multiple proteins in the pre-mRNA retention and splicing complex.
J Biol Chem. 2008 Nov 21;283(47):32317-27. doi: 10.1074/jbc.M804977200. Epub 2008 Sep 22.
9
Widespread impact of nonsense-mediated mRNA decay on the yeast intronome.
Mol Cell. 2008 Aug 8;31(3):360-70. doi: 10.1016/j.molcel.2008.07.005.
10
SR proteins and related factors in alternative splicing.
Adv Exp Med Biol. 2007;623:107-22. doi: 10.1007/978-0-387-77374-2_7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验