Suppr超能文献

用于巴西亚马逊地区植被分类的陆地卫星专题绘图仪(Landsat TM)和SPOT高分辨率几何成像仪(HRG)图像的比较研究

A Comparative Study of Landsat TM and SPOT HRG Images for Vegetation Classification in the Brazilian Amazon.

作者信息

Lu Dengsheng, Batistella Mateus, de Miranda Evaristo E, Moran Emilio

机构信息

School of Forestry and Wildlife Services, Auburn University, 602 Duncan Drive, Auburn, AL 36849 (

出版信息

Photogramm Eng Remote Sensing. 2008;74(3):311-321. doi: 10.14358/pers.74.3.311.

Abstract

Complex forest structure and abundant tree species in the moist tropical regions often cause difficulties in classifying vegetation classes with remotely sensed data. This paper explores improvement in vegetation classification accuracies through a comparative study of different image combinations based on the integration of Landsat Thematic Mapper (TM) and SPOT High Resolution Geometric (HRG) instrument data, as well as the combination of spectral signatures and textures. A maximum likelihood classifier was used to classify the different image combinations into thematic maps. This research indicated that data fusion based on HRG multispectral and panchromatic data slightly improved vegetation classification accuracies: a 3.1 to 4.6 percent increase in the kappa coefficient compared with the classification results based on original HRG or TM multispectral images. A combination of HRG spectral signatures and two textural images improved the kappa coefficient by 6.3 percent compared with pure HRG multispectral images. The textural images based on entropy or second-moment texture measures with a window size of 9 pixels × 9 pixels played an important role in improving vegetation classification accuracy. Overall, optical remote-sensing data are still insufficient for accurate vegetation classifications in the Amazon basin.

摘要

潮湿热带地区复杂的森林结构和丰富的树种常常给利用遥感数据进行植被分类带来困难。本文通过对基于陆地卫星专题制图仪(TM)和SPOT高分辨率几何(HRG)仪器数据集成的不同图像组合以及光谱特征与纹理组合的比较研究,探索提高植被分类精度的方法。使用最大似然分类器将不同的图像组合分类为专题地图。该研究表明,基于HRG多光谱和全色数据的数据融合略微提高了植被分类精度:与基于原始HRG或TM多光谱图像的分类结果相比,kappa系数提高了3.1%至4.6%。与纯HRG多光谱图像相比,HRG光谱特征与两幅纹理图像的组合使kappa系数提高了6.3%。基于熵或二阶矩纹理测度、窗口大小为9像素×9像素的纹理图像在提高植被分类精度方面发挥了重要作用。总体而言,光学遥感数据对于亚马逊流域准确的植被分类仍然不足。

相似文献

本文引用的文献

1
Deforestation in Amazonia.亚马孙地区的森林砍伐
Science. 2004 May 21;304(5674):1109-11. doi: 10.1126/science.304.5674.1109b.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验