Lu Dengsheng, Moran Emilio, Hetrick Scott
Anthropological Center for Training and Research on Global Environmental Change (ACT), Indiana University, Bloomington, Indiana, 47405, USA.
ISPRS J Photogramm Remote Sens. 2011 May 1;66(3):298-306. doi: 10.1016/j.isprsjprs.2010.10.010.
Mapping and monitoring impervious surface dynamic change in a complex urban-rural frontier with medium or coarse spatial resolution images is a challenge due to the mixed pixel problem and the spectral confusion between impervious surfaces and other non-vegetation land covers. This research selected Lucas do Rio Verde County in Mato Grosso State, Brazil as a case study to improve impervious surface estimation performance by the integrated use of Landsat and QuickBird images and to monitor impervious surface change by analyzing the normalized multitemporal Landsat-derived fractional impervious surfaces. This research demonstrates the importance of two step calibrations. The first step is to calibrate the Landsat-derived fraction impervious surface values through the established regression model based on the QuickBird-derived impervious surface image in 2008. The second step is to conduct the normalization between the calibrated 2008 impervious surface image with other dates of impervious surface images. This research indicates that the per-pixel based method overestimates the impervious surface area in the urban-rural frontier by 50-60%. In order to accurately estimate impervious surface area, it is necessary to map the fractional impervious surface image and further calibrate the estimates with high spatial resolution images. Also normalization of the multitemporal fractional impervious surface images is needed to reduce the impacts from different environmental conditions, in order to effectively detect the impervious surface dynamic change in a complex urban-rural frontier. The procedure developed in this paper for mapping and monitoring impervious surface area is especially valuable in urban-rural frontiers where multitemporal Landsat images are difficult to be used for accurately extracting impervious surface features based on traditional per-pixel based classification methods as they cannot effectively handle the mixed pixel problem.
利用中低空间分辨率影像来绘制和监测复杂城乡边缘地区不透水表面的动态变化是一项挑战,这是由于混合像元问题以及不透水表面与其他非植被土地覆盖物之间的光谱混淆所致。本研究选取巴西马托格罗索州的卢卡斯杜里奥韦尔代县作为案例研究,通过综合使用陆地卫星(Landsat)和快鸟(QuickBird)影像来提高不透水表面估算性能,并通过分析多期陆地卫星影像衍生的归一化不透水表面分数来监测不透水表面变化。本研究证明了两步校准的重要性。第一步是基于2008年快鸟影像衍生的不透水表面图像,通过建立的回归模型来校准陆地卫星影像衍生的不透水表面分数值。第二步是在2008年校准后的不透水表面图像与其他日期的不透水表面图像之间进行归一化处理。本研究表明,基于像元的方法在城乡边缘地区高估了不透水表面积50%-60%。为了准确估算不透水表面积,有必要绘制不透水表面分数图像,并进一步用高空间分辨率影像校准估算值。此外,还需要对多期不透水表面分数图像进行归一化处理,以减少不同环境条件的影响,从而有效检测复杂城乡边缘地区不透水表面的动态变化。本文所开发的用于绘制和监测不透水表面积的程序,在那些难以基于传统的基于像元分类方法利用多期陆地卫星影像准确提取不透水表面特征的城乡边缘地区尤为有价值,因为这些方法无法有效处理混合像元问题。