Boston Tony, Van Dijk Albert, Thackway Richard
Fenner School of Environment and Society, Australian National University, Acton, ACT 2601, Australia.
J Imaging. 2024 Jun 13;10(6):143. doi: 10.3390/jimaging10060143.
Accurate and comparable annual mapping is critical to understanding changing vegetation distribution and informing land use planning and management. A U-Net convolutional neural network (CNN) model was used to map natural vegetation and forest types based on annual Landsat geomedian reflectance composite images for a 500 km × 500 km study area in southeastern Australia. The CNN was developed using 2018 imagery. Label data were a ten-class natural vegetation and forest classification (i.e., Acacia, Callitris, Casuarina, Eucalyptus, Grassland, Mangrove, Melaleuca, Plantation, Rainforest and Non-Forest) derived by combining current best-available regional-scale maps of Australian forest types, natural vegetation and land use. The best CNN generated using six Landsat geomedian bands as input produced better results than a pixel-based random forest algorithm, with higher overall accuracy (OA) and weighted mean F1 score for all vegetation classes (93 vs. 87% in both cases) and a higher Kappa score (86 vs. 74%). The trained CNN was used to generate annual vegetation maps for 2000-2019 and evaluated for an independent test area of 100 km × 100 km using statistics describing accuracy regarding the label data and temporal stability. Seventy-six percent of pixels did not change over the 20 years (2000-2019), and year-on-year results were highly correlated (94-97% OA). The accuracy of the CNN model was further verified for the study area using 3456 independent vegetation survey plots where the species of interest had ≥ 50% crown cover. The CNN showed an 81% OA compared with the plot data. The model accuracy was also higher than the label data (76%), which suggests that imperfect training data may not be a major obstacle to CNN-based mapping. Applying the CNN to other regions would help to test the spatial transferability of these techniques and whether they can support the automated production of accurate and comparable annual maps of natural vegetation and forest types required for national reporting.
准确且具有可比性的年度制图对于理解植被分布变化以及为土地利用规划和管理提供信息至关重要。利用一个U-Net卷积神经网络(CNN)模型,基于澳大利亚东南部一个500千米×500千米研究区域的年度陆地卫星地理中位数反射率合成图像,绘制自然植被和森林类型图。该CNN模型是利用2018年的图像数据开发的。标签数据是一个十类的自然植被和森林分类(即金合欢属、白千层属、木麻黄属、桉属、草原、红树林、千层树属、人工林、雨林和非森林),它是通过合并澳大利亚森林类型、自然植被和土地利用的当前最佳区域尺度地图得出的。使用六个陆地卫星地理中位数波段作为输入生成的最佳CNN模型,其结果优于基于像素的随机森林算法,所有植被类别的总体准确率(OA)和加权平均F1分数更高(两种情况均为93%对87%),卡帕分数也更高(86%对74%)。经过训练的CNN模型被用于生成2000 - 2019年的年度植被图,并使用描述与标签数据准确性和时间稳定性相关的统计数据,对一个100千米×100千米的独立测试区域进行评估。在20年(2000 - 2019年)期间,76%的像素没有变化,逐年结果高度相关(OA为94 - 97%)。利用3456个独立的植被调查地块(其中感兴趣的物种树冠覆盖率≥50%)对研究区域的CNN模型准确性进行了进一步验证。与地块数据相比,CNN模型的OA为81%。该模型的准确率也高于标签数据(76%),这表明不完善的训练数据可能并不是基于CNN制图的主要障碍。将CNN模型应用于其他地区将有助于测试这些技术的空间可转移性,以及它们是否能够支持自动生成国家报告所需的准确且具有可比性的自然植被和森林类型年度地图。