Intertox, Inc., Seattle, WA, USA.
Chemosphere. 2009 Nov;77(10):1412-8. doi: 10.1016/j.chemosphere.2009.09.003. Epub 2009 Sep 29.
Reliable, up-front information on physical and biological properties of emerging materials is essential before making a decision and investment to formulate, synthesize, scale-up, test, and manufacture a new material for use in both military and civilian applications. Multiple quantitative structure-activity relationships (QSARs) software tools are available for predicting a material's physical/chemical properties and environmental effects. Even though information on emerging materials is often limited, QSAR software output is treated without sufficient uncertainty analysis. We hypothesize that uncertainty and variability in material properties and uncertainty in model prediction can be too large to provide meaningful results. To test this hypothesis, we predicted octanol water partitioning coefficients (logP) for multiple, similar compounds with limited physical-chemical properties using six different commercial logP calculators (KOWWIN, MarvinSketch, ACD/Labs, ALogP, CLogP, SPARC). Analysis was done for materials with largely uncertain properties that were similar, based on molecular formula, to military compounds (RDX, BTTN, TNT) and pharmaceuticals (Carbamazepine, Gemfibrizol). We have also compared QSAR modeling results for a well-studied pesticide and pesticide breakdown product (Atrazine, DDE). Our analysis shows variability due to structural variations of the emerging chemicals may be several orders of magnitude. The model uncertainty across six software packages was very high (10 orders of magnitude) for emerging materials while it was low for traditional chemicals (e.g. Atrazine). Thus the use of QSAR models for emerging materials screening requires extensive model validation and coupling QSAR output with available empirical data and other relevant information.
在做出决策和投资以开发、合成、扩大规模、测试和制造用于军事和民用应用的新材料之前,需要获得有关新兴材料物理和生物特性的可靠、预先的信息。有多种定量构效关系(QSAR)软件工具可用于预测材料的物理/化学特性和环境影响。尽管新兴材料的信息通常有限,但 QSAR 软件的输出未经充分的不确定性分析就被采用。我们假设材料特性和模型预测中的不确定性和可变性可能太大,无法提供有意义的结果。为了验证这一假设,我们使用六种不同的商业 logP 计算器(KOWWIN、MarvinSketch、ACD/Labs、ALOGP、CLogP、SPARC)预测了多种具有有限物理化学特性的类似化合物的辛醇水分配系数(logP)。分析基于分子公式,针对与军用化合物(RDX、BTTN、TNT)和药物(卡马西平、吉非贝齐)相似、性质不确定的材料进行。我们还比较了经过充分研究的农药和农药分解产物(阿特拉津、DDE)的 QSAR 建模结果。我们的分析表明,由于新兴化学物质的结构变化,其可变性可能是数量级的。对于新兴材料,六个软件包之间的模型不确定性非常高(10 个数量级),而对于传统化学物质(例如阿特拉津)则较低。因此,对于新兴材料的筛选,QSAR 模型的使用需要进行广泛的模型验证,并将 QSAR 输出与可用的经验数据和其他相关信息相结合。