Institute of Integrative and Comparative Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
Proc Biol Sci. 2010 Jan 7;277(1678):65-70. doi: 10.1098/rspb.2009.1236. Epub 2009 Sep 30.
Quiescence, or a sleep-like state, is a common and important feature of the daily lives of animals from both invertebrate and vertebrate taxa, suggesting that sleep appeared early in animal evolution. Recently, Drosophila melanogaster has been shown to be a relevant and powerful model for the genetic analysis of sleep behaviour. The sleep architecture of D. melanogaster is sexually dimorphic, with females sleeping much less than males during day-time, presumably because reproductive success requires greater foraging activity by the female as well as the search for egg-laying sites. However, this loss of sleep and increase in locomotor activity will heighten the risk for the female from environmental and predator hazards. In this study, we show that virgin females can minimize this risk by behaving like males, with an extended afternoon 'siesta'. Copulation results in the female losing 70 per cent of day-time sleep and becoming more active. This behaviour lasts for at least 8 days after copulation and is abolished if the mating males lack sex peptide (SP), normally present in the seminal fluid. Our results suggest that SP is the molecular switch that promotes wakefulness in the post-mated female, a change of behaviour compatible with increased foraging and egg-laying activity. The stress resulting from SP-dependent sleep deprivation might be an important contribution to the toxic side-effects of male accessory gland products that are known to reduce lifespan in post-mated females.
静止或类似睡眠的状态是无脊椎动物和脊椎动物中动物日常生活的共同且重要的特征,这表明睡眠在动物进化早期就出现了。最近,黑腹果蝇已被证明是研究睡眠行为遗传分析的一个相关且有力的模型。黑腹果蝇的睡眠结构存在性别二态性,雌性在白天的睡眠时间比雄性少得多,这可能是因为雌性的生殖成功需要更高的觅食活动以及寻找产卵地点。然而,这种睡眠的丧失和运动活动的增加会增加雌性面临环境和捕食者危险的风险。在这项研究中,我们表明,处女雌性可以通过像雄性一样进行下午的长时间“午休”来最小化这种风险。交配会导致雌性失去 70%的白天睡眠时间并变得更加活跃。这种行为至少持续 8 天,并且如果交配的雄性缺乏通常存在于精液中的性肽 (SP),则这种行为就会被废除。我们的研究结果表明,SP 是促进交配后雌性清醒的分子开关,这种行为的改变与增加的觅食和产卵活动相兼容。SP 依赖性睡眠剥夺所导致的压力可能是雄性附腺产物的毒性副作用的一个重要贡献,已知这些产物会降低交配后雌性的寿命。