Computational Biophysics Group, Research School of Biology, Australian National University, ACT 2601, Australia.
Small. 2009 Dec;5(24):2870-5. doi: 10.1002/smll.200901229.
Biological ion channels in membranes are selectively permeable to specific ionic species. They maintain the resting membrane potential, generate propagated action potentials, and control a wide variety of cell functions. Here it is demonstrated theoretically that boron nitride nanotubes have the ability to carry out some of the important functions of biological ion channels. Boron nitride nanotubes with radii of 4.83 and 5.52 A embedded in a silicon nitride membrane are selectively permeable to cations and anions, respectively. They broadly mimic some of the permeation characteristics of gramicidin and chloride channels. Using distributional molecular dynamics, which is a combination of molecular and stochastic dynamics simulations, the properties of these engineered nanotubes are characterized, such as the free energy encountered by charged particles, the water-ion structure within the pore, and the current-voltage and current-concentration profiles. These engineered nanotubes have potential applications as sensitive biosensors, antibiotics, or filtration devices.
生物膜中的离子通道对特定的离子物种具有选择性通透性。它们维持静息膜电位、产生传播动作电位,并控制着各种各样的细胞功能。本文从理论上证明了氮化硼纳米管具有执行一些重要的生物离子通道功能的能力。半径分别为 4.83 和 5.52 A 的氮化硼纳米管嵌入氮化硅膜中,分别对阳离子和阴离子具有选择性通透性。它们广泛模拟了短杆菌肽和氯离子通道的一些渗透特性。使用分布分子动力学(一种分子动力学和随机动力学模拟的组合)对这些工程纳米管的特性进行了表征,例如带电粒子遇到的自由能、孔内的水-离子结构以及电流-电压和电流-浓度曲线。这些工程纳米管具有作为灵敏生物传感器、抗生素或过滤装置的潜在应用。