Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287-7218, USA.
J Int Neuropsychol Soc. 2009 Nov;15(6):1012-22. doi: 10.1017/S1355617709990713. Epub 2009 Oct 2.
Regression-based normative techniques account for variability in test performance associated with multiple predictor variables and generate expected scores based on algebraic equations. Using this approach, we show that estimated IQ, based on oral word reading, accounts for 1-9% of the variability beyond that explained by individual differences in age, sex, race, and years of education for most cognitive measures. These results confirm that adding estimated "premorbid" IQ to demographic predictors in multiple regression models can incrementally improve the accuracy with which regression-based norms (RBNs) benchmark expected neuropsychological test performance in healthy adults. It remains to be seen whether the incremental variance in test performance explained by estimated "premorbid" IQ translates to improved diagnostic accuracy in patient samples. We describe these methods, and illustrate the step-by-step application of RBNs with two cases. We also discuss the rationale, assumptions, and caveats of this approach. More broadly, we note that adjusting test scores for age and other characteristics might actually decrease the accuracy with which test performance predicts absolute criteria, such as the ability to drive or live independently.
基于回归的规范技术可以解释与多个预测变量相关的测试表现的变异性,并根据代数方程生成预期分数。使用这种方法,我们表明,基于口头单词阅读的估计智商可以解释大多数认知测量中除了年龄、性别、种族和受教育年限等个体差异之外的 1-9%的变异性。这些结果证实,在多元回归模型中,将估计的“发病前”智商添加到人口统计学预测因子中,可以逐步提高基于回归的规范(RBN)在健康成年人中预测神经心理测试表现的准确性。由估计的“发病前”智商解释的测试表现的增量方差是否可以转化为患者样本中诊断准确性的提高,还有待观察。我们描述了这些方法,并通过两个案例说明了 RBN 的逐步应用。我们还讨论了这种方法的原理、假设和注意事项。更广泛地说,我们注意到,调整测试分数以适应年龄和其他特征实际上可能会降低测试表现预测绝对标准(例如驾驶或独立生活的能力)的准确性。