Suppr超能文献

钙联蛋白在药理学伴侣 11-顺式视黄醛存在的情况下提高突变视蛋白的折叠效率。

Calnexin improves the folding efficiency of mutant rhodopsin in the presence of pharmacological chaperone 11-cis-retinal.

机构信息

Department of Ophthalmology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.

出版信息

J Biol Chem. 2009 Nov 27;284(48):33333-42. doi: 10.1074/jbc.M109.043364. Epub 2009 Oct 2.

Abstract

The lectin chaperone calnexin (Cnx) is important for quality control of glycoproteins, and the chances of correct folding of a protein increase the longer the protein interacts with Cnx. Mutations in glycoproteins increase their association with Cnx, and these mutant proteins are retained in the endoplasmic reticulum. However, until now, the increased interaction with Cnx was not known to increase the folding of mutant glycoproteins. Because many human diseases result from glycoprotein misfolding, a Cnx-assisted folding of mutant glycoproteins could be beneficial. Mutations of rhodopsin, the glycoprotein pigment of rod photoreceptors, cause misfolding resulting in retinitis pigmentosa. Despite the critical role of Cnx in glycoprotein folding, surprisingly little is known about its interaction with rhodopsin or whether this interaction could be modulated to increase the folding of mutant rhodopsin. Here, we demonstrate that Cnx preferentially associates with misfolded mutant opsins associated with retinitis pigmentosa. Furthermore, the overexpression of Cnx leads to an increased accumulation of misfolded P23H opsin but not the correctly folded protein. Finally, we demonstrate that increased levels of Cnx in the presence of the pharmacological chaperone 11-cis-retinal increase the folding efficiency and result in an increase in correct folding of mutant rhodopsin. These results demonstrate that misfolded rather than correctly folded rhodopsin is a substrate for Cnx and that the interaction between Cnx and mutant, misfolded rhodopsin, can be targeted to increase the yield of folded mutant protein.

摘要

凝集素伴侣 calnexin(Cnx)对于糖蛋白的质量控制非常重要,蛋白质与 Cnx 相互作用的时间越长,其正确折叠的机会就越大。糖蛋白中的突变会增加它们与 Cnx 的结合,这些突变蛋白会被保留在内质网中。然而,直到现在,人们还不知道与 Cnx 的相互作用增加会增加突变糖蛋白的折叠。由于许多人类疾病是由糖蛋白错误折叠引起的,因此 Cnx 辅助折叠突变糖蛋白可能是有益的。视紫红质(rod 光感受器的糖蛋白色素)中的突变会导致错误折叠,从而导致色素性视网膜炎。尽管 Cnx 在糖蛋白折叠中起着关键作用,但令人惊讶的是,人们对其与视紫红质的相互作用知之甚少,或者是否可以调节这种相互作用以增加突变视紫红质的折叠。在这里,我们证明 Cnx 优先与与色素性视网膜炎相关的错误折叠的突变视紫质结合。此外,Cnx 的过表达导致错误折叠的 P23H 视蛋白的积累增加,但不会导致正确折叠的蛋白质增加。最后,我们证明在药理学伴侣 11-顺式视黄醛存在的情况下增加 Cnx 的水平会增加错误折叠的突变视紫质的折叠效率,并导致正确折叠的突变视紫质增加。这些结果表明,错误折叠的视紫红质而不是正确折叠的视紫红质是 Cnx 的底物,并且 Cnx 与突变、错误折叠的视紫红质之间的相互作用可以被靶向以增加折叠突变蛋白的产量。

相似文献

1
Calnexin improves the folding efficiency of mutant rhodopsin in the presence of pharmacological chaperone 11-cis-retinal.
J Biol Chem. 2009 Nov 27;284(48):33333-42. doi: 10.1074/jbc.M109.043364. Epub 2009 Oct 2.
2
Molecular mechanisms of rhodopsin retinitis pigmentosa and the efficacy of pharmacological rescue.
J Mol Biol. 2010 Feb 5;395(5):1063-78. doi: 10.1016/j.jmb.2009.11.015. Epub 2009 Nov 11.
4
Calnexin is not essential for mammalian rod opsin biogenesis.
Mol Vis. 2008;14:2466-74. Epub 2008 Dec 26.
5
Misfolded rhodopsin mutants display variable aggregation properties.
Biochim Biophys Acta Mol Basis Dis. 2018 Sep;1864(9 Pt B):2938-2948. doi: 10.1016/j.bbadis.2018.06.004. Epub 2018 Jun 8.
7
The cellular fate of mutant rhodopsin: quality control, degradation and aggresome formation.
J Cell Sci. 2002 Jul 15;115(Pt 14):2907-18. doi: 10.1242/jcs.115.14.2907.
8
Retinobenzaldehydes as proper-trafficking inducers of folding-defective P23H rhodopsin mutant responsible for retinitis pigmentosa.
Bioorg Med Chem. 2010 Oct 1;18(19):7022-8. doi: 10.1016/j.bmc.2010.08.014. Epub 2010 Aug 11.
9
Retinitis pigmentosa mutants provide insight into the role of the N-terminal cap in rhodopsin folding, structure, and function.
J Biol Chem. 2013 Nov 22;288(47):33912-33926. doi: 10.1074/jbc.M113.483032. Epub 2013 Oct 8.
10
Inactivation of VCP/ter94 suppresses retinal pathology caused by misfolded rhodopsin in Drosophila.
PLoS Genet. 2010 Aug 26;6(8):e1001075. doi: 10.1371/journal.pgen.1001075.

引用本文的文献

1
Preclinical dose response study shows NR2E3 can attenuate retinal degeneration in the retinitis pigmentosa mouse model Rho.
Gene Ther. 2024 May;31(5-6):255-262. doi: 10.1038/s41434-024-00440-6. Epub 2024 Jan 26.
3
Structure network-based landscape of rhodopsin misfolding by mutations and algorithmic prediction of small chaperone action.
Comput Struct Biotechnol J. 2021 Nov 2;19:6020-6038. doi: 10.1016/j.csbj.2021.10.040. eCollection 2021.
4
Structural aspects of rod opsin and their implication in genetic diseases.
Pflugers Arch. 2021 Sep;473(9):1339-1359. doi: 10.1007/s00424-021-02546-x. Epub 2021 Mar 16.
7
Investigation and Restoration of BEST1 Activity in Patient-derived RPEs with Dominant Mutations.
Sci Rep. 2019 Dec 13;9(1):19026. doi: 10.1038/s41598-019-54892-7.
8
A Small Chaperone Improves Folding and Routing of Rhodopsin Mutants Linked to Inherited Blindness.
iScience. 2018 Jun 29;4:1-19. doi: 10.1016/j.isci.2018.05.001. Epub 2018 May 5.
9
A forward genetic screen identifies chaperone CNX-1 as a conserved biogenesis regulator of K channels.
J Gen Physiol. 2018 Aug 6;150(8):1189-1201. doi: 10.1085/jgp.201812025. Epub 2018 Jun 25.
10
The molecular and cellular basis of rhodopsin retinitis pigmentosa reveals potential strategies for therapy.
Prog Retin Eye Res. 2018 Jan;62:1-23. doi: 10.1016/j.preteyeres.2017.10.002. Epub 2017 Oct 16.

本文引用的文献

1
Biphasic photoreceptor degeneration induced by light in a T17M rhodopsin mouse model of cone bystander damage.
Invest Ophthalmol Vis Sci. 2009 Jun;50(6):2956-65. doi: 10.1167/iovs.08-3116. Epub 2009 Jan 10.
2
Calnexin is not essential for mammalian rod opsin biogenesis.
Mol Vis. 2008;14:2466-74. Epub 2008 Dec 26.
3
Chemical and biological approaches synergize to ameliorate protein-folding diseases.
Cell. 2008 Sep 5;134(5):769-81. doi: 10.1016/j.cell.2008.06.037.
6
Role of calnexin in the ER quality control and productive folding of CFTR; differential effect of calnexin knockout on wild-type and DeltaF508 CFTR.
Biochim Biophys Acta. 2008 Sep;1783(9):1585-94. doi: 10.1016/j.bbamcr.2008.04.002. Epub 2008 Apr 16.
7
A high-throughput screening method for small-molecule pharmacologic chaperones of misfolded rhodopsin.
Invest Ophthalmol Vis Sci. 2008 Jul;49(7):3224-30. doi: 10.1167/iovs.07-1539. Epub 2008 Mar 31.
8
Adapting proteostasis for disease intervention.
Science. 2008 Feb 15;319(5865):916-9. doi: 10.1126/science.1141448.
9
Defective protein folding and intracellular retention of thyroglobulin-R19K mutant as a cause of human congenital goiter.
Mol Endocrinol. 2008 Feb;22(2):477-84. doi: 10.1210/me.2007-0183. Epub 2007 Oct 4.
10
Increase of calnexin gene dosage boosts the secretion of heterologous proteins by Hansenula polymorpha.
FEMS Yeast Res. 2007 Oct;7(7):1168-80. doi: 10.1111/j.1567-1364.2007.00271.x. Epub 2007 Jul 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验