Suppr超能文献

视紫红质色素性视网膜炎的分子和细胞基础揭示了潜在的治疗策略。

The molecular and cellular basis of rhodopsin retinitis pigmentosa reveals potential strategies for therapy.

机构信息

UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK.

School of Biological Sciences, University of Essex, Wivenhoe Park, Essex CO4 3SQ, UK.

出版信息

Prog Retin Eye Res. 2018 Jan;62:1-23. doi: 10.1016/j.preteyeres.2017.10.002. Epub 2017 Oct 16.

Abstract

Inherited mutations in the rod visual pigment, rhodopsin, cause the degenerative blinding condition, retinitis pigmentosa (RP). Over 150 different mutations in rhodopsin have been identified and, collectively, they are the most common cause of autosomal dominant RP (adRP). Mutations in rhodopsin are also associated with dominant congenital stationary night blindness (adCSNB) and, less frequently, recessive RP (arRP). Recessive RP is usually associated with loss of rhodopsin function, whereas the dominant conditions are a consequence of gain of function and/or dominant negative activity. The in-depth characterisation of many rhodopsin mutations has revealed that there are distinct consequences on the protein structure and function associated with different mutations. Here we categorise rhodopsin mutations into seven discrete classes; with defects ranging from misfolding and disruption of proteostasis, through mislocalisation and disrupted intracellular traffic to instability and altered function. Rhodopsin adRP offers a unique paradigm to understand how disturbances in photoreceptor homeostasis can lead to neuronal cell death. Furthermore, a wide range of therapies have been tested in rhodopsin RP, from gene therapy and gene editing to pharmacological interventions. The understanding of the disease mechanisms associated with rhodopsin RP and the development of targeted therapies offer the potential of treatment for this currently untreatable neurodegeneration.

摘要

遗传性视杆细胞视觉色素视紫红质突变会导致退行性致盲疾病——色素性视网膜炎(RP)。目前已经发现超过 150 种不同的视紫红质突变,这些突变共同导致了常染色体显性遗传 RP(adRP)。视紫红质突变也与显性先天性静止性夜盲症(adCSNB)有关,且较少导致常染色体隐性遗传 RP(arRP)。常染色体隐性遗传 RP 通常与视紫红质功能丧失有关,而显性疾病则是功能获得和/或显性负性作用的结果。对视紫红质突变的深入研究表明,不同的突变会导致蛋白结构和功能的显著差异。在这里,我们将视紫红质突变分为七类;从错误折叠和蛋白稳态破坏,到定位错误和细胞内运输中断,再到不稳定性和功能改变。视紫红质 adRP 为理解感光细胞内稳态紊乱如何导致神经元细胞死亡提供了独特的范例。此外,已经在视紫红质 RP 中测试了多种治疗方法,从基因治疗和基因编辑到药物干预。对视紫红质 RP 相关疾病机制的理解和靶向治疗的发展为这种目前无法治疗的神经退行性疾病提供了治疗的潜力。

相似文献

1
The molecular and cellular basis of rhodopsin retinitis pigmentosa reveals potential strategies for therapy.
Prog Retin Eye Res. 2018 Jan;62:1-23. doi: 10.1016/j.preteyeres.2017.10.002. Epub 2017 Oct 16.
3
Mechanisms of cell death in rhodopsin retinitis pigmentosa: implications for therapy.
Trends Mol Med. 2005 Apr;11(4):177-85. doi: 10.1016/j.molmed.2005.02.007.
4
Structural aspects of rod opsin and their implication in genetic diseases.
Pflugers Arch. 2021 Sep;473(9):1339-1359. doi: 10.1007/s00424-021-02546-x. Epub 2021 Mar 16.
5
Defective intracellular transport is the molecular basis of rhodopsin-dependent dominant retinal degeneration.
Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):3070-4. doi: 10.1073/pnas.92.7.3070.
6
Targeting the Proteostasis Network in Rhodopsin Retinitis Pigmentosa.
Adv Exp Med Biol. 2016;854:479-84. doi: 10.1007/978-3-319-17121-0_64.
8
Molecular mechanisms of rhodopsin retinitis pigmentosa and the efficacy of pharmacological rescue.
J Mol Biol. 2010 Feb 5;395(5):1063-78. doi: 10.1016/j.jmb.2009.11.015. Epub 2009 Nov 11.

引用本文的文献

1
Retinal Gatekeepers: Molecular Mechanism and Therapeutic Role of Cysteine and Selenocysteine.
Biomolecules. 2025 Aug 21;15(8):1203. doi: 10.3390/biom15081203.
2
Exploring genotype-phenotype correlations in pathological myopia: a case report.
Front Med (Lausanne). 2025 Aug 5;12:1624093. doi: 10.3389/fmed.2025.1624093. eCollection 2025.
6
Retinitis Pigmentosa: From Genetic Insights to Innovative Therapeutic Approaches-A Literature Review.
Medicina (Kaunas). 2025 Jun 29;61(7):1179. doi: 10.3390/medicina61071179.
8
Unifying perspectives on the activity and genotypic targeting of pharmacological chaperones.
J Biol Chem. 2025 Jun 18;301(7):110375. doi: 10.1016/j.jbc.2025.110375.
9
A genome-wide in vivo CRISPR screen identifies neuroprotective strategies in the mouse and human retina.
bioRxiv. 2025 Mar 24:2025.03.22.644712. doi: 10.1101/2025.03.22.644712.

本文引用的文献

1
The role of the ER stress-response protein PERK in rhodopsin retinitis pigmentosa.
Hum Mol Genet. 2017 Dec 15;26(24):4896-4905. doi: 10.1093/hmg/ddx370.
2
Targeting Specificity of the CRISPR/Cas9 System.
ACS Synth Biol. 2017 Sep 15;6(9):1609-1613. doi: 10.1021/acssynbio.7b00270.
4
The Endoplasmic Reticulum Unfolded Protein Response in Neurodegenerative Disorders and Its Potential Therapeutic Significance.
Front Mol Neurosci. 2017 Jun 16;10:187. doi: 10.3389/fnmol.2017.00187. eCollection 2017.
5
Using CRISPR-Cas9 to Generate Gene-Corrected Autologous iPSCs for the Treatment of Inherited Retinal Degeneration.
Mol Ther. 2017 Sep 6;25(9):1999-2013. doi: 10.1016/j.ymthe.2017.05.015. Epub 2017 Jun 12.
6
G Protein-Coupled Receptors Contain Two Conserved Packing Clusters.
Biophys J. 2017 Jun 6;112(11):2315-2326. doi: 10.1016/j.bpj.2017.04.051.
7
Unexpected mutations after CRISPR-Cas9 editing in vivo.
Nat Methods. 2017 May 30;14(6):547-548. doi: 10.1038/nmeth.4293.
10
Loss of Arf4 causes severe degeneration of the exocrine pancreas but not cystic kidney disease or retinal degeneration.
PLoS Genet. 2017 Apr 14;13(4):e1006740. doi: 10.1371/journal.pgen.1006740. eCollection 2017 Apr.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验