Suppr超能文献

软骨组织工程:迈向生物材料辅助间充质干细胞治疗。

Cartilage tissue engineering: towards a biomaterial-assisted mesenchymal stem cell therapy.

机构信息

Inserm, U 791, LIOAD, Nantes, F-44042, France.

出版信息

Curr Stem Cell Res Ther. 2009 Dec;4(4):318-29. doi: 10.2174/157488809789649205.

Abstract

Injuries to articular cartilage are one of the most challenging issues of musculoskeletal medicine due to the poor intrinsic ability of this tissue for repair. Despite progress in orthopaedic surgery, the lack of efficient modalities of treatment for large chondral defects has prompted research on tissue engineering combining chondrogenic cells, scaffold materials and environmental factors. The aim of this review is to focus on the recent advances made in exploiting the potentials of cell therapy for cartilage engineering. These include: 1) defining the best cell candidates between chondrocytes or multipotent progenitor cells, such as multipotent mesenchymal stromal cells (MSC), in terms of readily available sources for isolation, expansion and repair potential; 2) engineering biocompatible and biodegradable natural or artificial matrix scaffolds as cell carriers, chondrogenic factors releasing factories and supports for defect filling, 3) identifying more specific growth factors and the appropriate scheme of application that will promote both chondrogenic differentiation and then maintain the differentiated phenotype overtime and 4) evaluating the optimal combinations that will answer to the functional demand placed upon cartilage tissue replacement in animal models and in clinics. Finally, some of the major obstacles generally encountered in cartilage engineering are discussed as well as future trends to overcome these limiting issues for clinical applications.

摘要

关节软骨损伤是肌肉骨骼医学中最具挑战性的问题之一,因为这种组织的内在修复能力很差。尽管矫形外科取得了进展,但对于大面积软骨缺损缺乏有效的治疗方法,促使人们研究将软骨细胞、支架材料和环境因素结合起来的组织工程。本文旨在重点介绍细胞疗法在软骨工程中的最新进展。这些进展包括:1)根据分离、扩增和修复潜力的易得性,确定软骨细胞或多能祖细胞(如多能间充质基质细胞[MSC])中最佳的候选细胞;2)设计生物相容性和可生物降解的天然或人工基质支架作为细胞载体、软骨形成因子释放工厂和缺陷填充的支撑物;3)确定更具体的生长因子和应用方案,以促进软骨形成分化,并随着时间的推移维持分化表型;4)评估最佳组合,以满足动物模型和临床中对软骨组织替代的功能需求。最后,还讨论了软骨工程中通常遇到的一些主要障碍,以及未来克服这些限制因素以实现临床应用的趋势。

相似文献

1
Cartilage tissue engineering: towards a biomaterial-assisted mesenchymal stem cell therapy.
Curr Stem Cell Res Ther. 2009 Dec;4(4):318-29. doi: 10.2174/157488809789649205.
2
Cartilage engineering: a crucial combination of cells, biomaterials and biofactors.
Trends Biotechnol. 2009 May;27(5):307-14. doi: 10.1016/j.tibtech.2009.02.005. Epub 2009 Mar 28.
3
Cartilage Tissue Regeneration: The Roles of Cells, Stimulating Factors and Scaffolds.
Curr Stem Cell Res Ther. 2018;13(7):547-567. doi: 10.2174/1574888X12666170608080722.
4
Mesenchymal stem cells for cartilage engineering.
Biomed Mater Eng. 2012;22(1-3):69-80. doi: 10.3233/BME-2012-0691.
5
Different Sources of Stem Cells and their Application in Cartilage Tissue Engineering.
Curr Stem Cell Res Ther. 2018;13(7):568-575. doi: 10.2174/1574888X13666180122151909.
6
Adult Stem Cells and Hydrogels for Cartilage Regeneration.
Curr Stem Cell Res Ther. 2018;13(7):533-546. doi: 10.2174/1574888X12666170511142917.
7
Repair of injured articular and growth plate cartilage using mesenchymal stem cells and chondrogenic gene therapy.
Curr Stem Cell Res Ther. 2006 May;1(2):213-29. doi: 10.2174/157488806776956904.
8
Biomaterial and mesenchymal stem cell for articular cartilage reconstruction.
Curr Stem Cell Res Ther. 2014 May;9(3):254-67. doi: 10.2174/1574888x09666140213202700.

引用本文的文献

1
Engineering bone/cartilage organoids: strategy, progress, and application.
Bone Res. 2024 Nov 20;12(1):66. doi: 10.1038/s41413-024-00376-y.
3
Recent trends of stem cell therapies in the management of orthopedic surgical challenges.
Int J Surg. 2024 Oct 1;110(10):6330-6344. doi: 10.1097/JS9.0000000000001524.
4
Orthobiologics in knee osteoarthritis, dream or reality?
Arch Orthop Trauma Surg. 2024 Sep;144(9):3937-3946. doi: 10.1007/s00402-024-05310-9. Epub 2024 Apr 17.
5
Women's contribution to stem cell research for osteoarthritis: an opinion paper.
Front Cell Dev Biol. 2023 Dec 19;11:1209047. doi: 10.3389/fcell.2023.1209047. eCollection 2023.
6
Conditioned Medium - Is it an Undervalued Lab Waste with the Potential for Osteoarthritis Management?
Stem Cell Rev Rep. 2023 Jul;19(5):1185-1213. doi: 10.1007/s12015-023-10517-1. Epub 2023 Feb 15.
7
Peripheral Blood-Derived Stem Cells for the Treatment of Cartilage Injuries: A Systematic Review.
Front Bioeng Biotechnol. 2022 Jul 22;10:956614. doi: 10.3389/fbioe.2022.956614. eCollection 2022.
9
Material-Assisted Strategies for Osteochondral Defect Repair.
Adv Sci (Weinh). 2022 May;9(16):e2200050. doi: 10.1002/advs.202200050. Epub 2022 Mar 24.
10

本文引用的文献

2
Mesenchymal stem cells overexpressing interleukin-10 attenuate collagen-induced arthritis in mice.
Clin Exp Immunol. 2008 Aug;153(2):269-76. doi: 10.1111/j.1365-2249.2008.03683.x.
5
Autologous chondrocyte implantation in a novel alginate-agarose hydrogel: outcome at two years.
J Bone Joint Surg Br. 2008 May;90(5):597-604. doi: 10.1302/0301-620X.90B5.20360.
6
Nasal chondrocytes and fibrin sealant for cartilage tissue engineering.
J Biomed Mater Res A. 2009 Apr;89(1):176-85. doi: 10.1002/jbm.a.31988.
7
The potential of IGF-1 and TGFbeta1 for promoting "adult" articular cartilage repair: an in vitro study.
Tissue Eng Part A. 2008 Jul;14(7):1251-61. doi: 10.1089/ten.tea.2007.0211.
8
Present status of and future direction for articular cartilage repair.
J Bone Miner Metab. 2008;26(2):115-22. doi: 10.1007/s00774-007-0802-8. Epub 2008 Feb 27.
9
Mesenchymal stem cells: a promising candidate in regenerative medicine.
Int J Biochem Cell Biol. 2008;40(5):815-20. doi: 10.1016/j.biocel.2008.01.007. Epub 2008 Jan 16.
10
Insulin-like growth factor I releasing silk fibroin scaffolds induce chondrogenic differentiation of human mesenchymal stem cells.
J Control Release. 2008 Apr 7;127(1):12-21. doi: 10.1016/j.jconrel.2007.11.006. Epub 2007 Nov 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验