Okan Osman Burak, Atilgan Ali Rana, Atilgan Canan
Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey.
Biophys J. 2009 Oct 7;97(7):2080-8. doi: 10.1016/j.bpj.2009.07.036.
We elucidate the physics of protein dynamical transition via 10-100-ns molecular dynamics simulations at temperatures spanning 160-300 K. By tracking the energy fluctuations, we show that the protein dynamical transition is marked by a crossover from nonstationary to stationary processes that underlie the dynamics of protein motions. A two-timescale function captures the nonexponential character of backbone structural relaxations. One timescale is attributed to the collective segmental motions and the other to local relaxations. The former is well defined by a single-exponential, nanosecond decay, operative at all temperatures. The latter is described by a set of processes that display a distribution of timescales. Although their average remains on the picosecond timescale, the distribution is markedly contracted at the onset of the transition. It is shown that the collective motions impose bounds on timescales spanned by local dynamical processes. The nonstationary character below the transition implicates the presence of a collection of substates whose interactions are restricted. At these temperatures, a wide distribution of local-motion timescales, extending beyond that of nanoseconds, is observed. At physiological temperatures, local motions are confined to timescales faster than nanoseconds. This relatively narrow window makes possible the appearance of multiple channels for the backbone dynamics to operate.
我们通过在160 - 300K温度范围内进行10 - 100纳秒的分子动力学模拟,阐明了蛋白质动力学转变的物理机制。通过跟踪能量波动,我们表明蛋白质动力学转变的特征是从非平稳过程到平稳过程的转变,这些过程构成了蛋白质运动的动力学基础。一个双时间尺度函数捕捉了主链结构弛豫的非指数特性。一个时间尺度归因于集体片段运动,另一个归因于局部弛豫。前者由一个单指数的纳秒级衰减很好地定义,在所有温度下都起作用。后者由一组显示时间尺度分布的过程描述。尽管它们的平均值保持在皮秒时间尺度上,但在转变开始时分布明显收缩。结果表明,集体运动对局部动力学过程跨越的时间尺度施加了限制。转变温度以下的非平稳特性意味着存在一组相互作用受限的亚态。在这些温度下,观察到局部运动时间尺度的广泛分布,延伸到纳秒以上。在生理温度下,局部运动局限于比纳秒更快的时间尺度。这个相对较窄的窗口使得主链动力学能够通过多个通道运行成为可能。