Suppr超能文献

蛋白质中的纳秒级运动对局部动力学的时间尺度分布施加了限制。

Nanosecond motions in proteins impose bounds on the timescale distributions of local dynamics.

作者信息

Okan Osman Burak, Atilgan Ali Rana, Atilgan Canan

机构信息

Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey.

出版信息

Biophys J. 2009 Oct 7;97(7):2080-8. doi: 10.1016/j.bpj.2009.07.036.

Abstract

We elucidate the physics of protein dynamical transition via 10-100-ns molecular dynamics simulations at temperatures spanning 160-300 K. By tracking the energy fluctuations, we show that the protein dynamical transition is marked by a crossover from nonstationary to stationary processes that underlie the dynamics of protein motions. A two-timescale function captures the nonexponential character of backbone structural relaxations. One timescale is attributed to the collective segmental motions and the other to local relaxations. The former is well defined by a single-exponential, nanosecond decay, operative at all temperatures. The latter is described by a set of processes that display a distribution of timescales. Although their average remains on the picosecond timescale, the distribution is markedly contracted at the onset of the transition. It is shown that the collective motions impose bounds on timescales spanned by local dynamical processes. The nonstationary character below the transition implicates the presence of a collection of substates whose interactions are restricted. At these temperatures, a wide distribution of local-motion timescales, extending beyond that of nanoseconds, is observed. At physiological temperatures, local motions are confined to timescales faster than nanoseconds. This relatively narrow window makes possible the appearance of multiple channels for the backbone dynamics to operate.

摘要

我们通过在160 - 300K温度范围内进行10 - 100纳秒的分子动力学模拟,阐明了蛋白质动力学转变的物理机制。通过跟踪能量波动,我们表明蛋白质动力学转变的特征是从非平稳过程到平稳过程的转变,这些过程构成了蛋白质运动的动力学基础。一个双时间尺度函数捕捉了主链结构弛豫的非指数特性。一个时间尺度归因于集体片段运动,另一个归因于局部弛豫。前者由一个单指数的纳秒级衰减很好地定义,在所有温度下都起作用。后者由一组显示时间尺度分布的过程描述。尽管它们的平均值保持在皮秒时间尺度上,但在转变开始时分布明显收缩。结果表明,集体运动对局部动力学过程跨越的时间尺度施加了限制。转变温度以下的非平稳特性意味着存在一组相互作用受限的亚态。在这些温度下,观察到局部运动时间尺度的广泛分布,延伸到纳秒以上。在生理温度下,局部运动局限于比纳秒更快的时间尺度。这个相对较窄的窗口使得主链动力学能够通过多个通道运行成为可能。

相似文献

3
Dynamics and mechanism of ultrafast water-protein interactions.超快水-蛋白质相互作用的动力学与机制
Proc Natl Acad Sci U S A. 2016 Jul 26;113(30):8424-9. doi: 10.1073/pnas.1602916113. Epub 2016 Jun 23.
10
Dynamics of tRNA at different levels of hydration.不同水合水平下tRNA的动力学
Biophys J. 2009 Apr 8;96(7):2755-62. doi: 10.1016/j.bpj.2008.12.3895.

本文引用的文献

1
Protein dynamical transition does not require protein structure.蛋白质动力学转变并不需要蛋白质结构。
Phys Rev Lett. 2008 Oct 24;101(17):178103. doi: 10.1103/PhysRevLett.101.178103. Epub 2008 Oct 23.
4
Novelty and collective attention.新颖性与集体关注。
Proc Natl Acad Sci U S A. 2007 Nov 6;104(45):17599-601. doi: 10.1073/pnas.0704916104. Epub 2007 Oct 25.
6
How a vicinal layer of solvent modulates the dynamics of proteins.溶剂的邻位层如何调节蛋白质的动力学。
Biophys J. 2008 Jan 1;94(1):79-89. doi: 10.1529/biophysj.107.116426. Epub 2007 Sep 7.
10
Scalable molecular dynamics with NAMD.使用 NAMD 的可扩展分子动力学
J Comput Chem. 2005 Dec;26(16):1781-802. doi: 10.1002/jcc.20289.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验