Laboratory of Cardiac/Membrane Physiology, The Rockefeller University, New York, NY, USA.
Channels (Austin). 2009 Nov;3(6):383-6. doi: 10.4161/chan.3.6.9775. Epub 2009 Nov 10.
The Na(+),K(+)-ATPase pump achieves thermodynamically uphill exchange of cytoplasmic Na(+) ions for extracellular K(+) ions by using ATP-mediated phosphorylation, followed by autodephosphorylation, to power conformational changes that allow ion access to the pump's binding sites from only one side of the membrane at a time. Formally, the pump behaves like an ion channel with two tightly coupled gates that are constrained to open and close alternately. The marine agent palytoxin disrupts this coupling, allowing both gates to sometimes be open, so temporarily transforming a pump into an ion channel. We made a cysteine scan of Na(+),K(+)-ATPase transmembrane (TM) segments TM1 to TM6, and used recordings of Na(+) current flow through palytoxin-bound pump-channels to monitor accessibility of introduced cysteine residues via their reaction with hydrophilic methanethiosulfonate (MTS) reagents. To visualize the open-channel pathway, the reactive positions were mapped onto a homology model of Na(+),K(+)-ATPase based on the structure of the related sarcoplasmicand endoplasmic-reticulum (SERCA) Ca(2+)-ATPase in a BeF(3)(-)-trapped state,(1,2) in which the extra-cytoplasmic gate is wide open (although the cytoplasmic access pathway is firmly shut). The results revealed a single unbroken chain of reactive positions that traverses the pump from the extracellular surface to the cytoplasm, comprises residues from TM1, TM2, TM4 and TM6, and passes through the equivalent of cation binding site II in SERCA, but not through site I. Cavity search analysis of the homology model validated its use for mapping the data by yielding a calculated extra-cytoplasmic pathway surrounded by MTS-reactive residues. As predicted by previous experimental results, that calculated extra-cytoplasmic pathway abruptly broadens above residue T806, at the outermost end of TM6 that forms the floor of the extracellular-facing vestibule. These findings provide a structural basis for further understanding cation translocation by the Na(+),K(+)-ATPase and by other P-type pumps like the Ca(2+)- and H(+),K(+)-ATPases.
钠钾-ATP 酶泵通过 ATP 介导的磷酸化作用实现细胞质钠离子与细胞外钾离子的热力学 uphill 交换,随后进行自去磷酸化作用,从而使构象发生变化,使离子能够从膜的一侧一次仅进入泵的结合位点。从形式上看,该泵的行为类似于具有两个紧密偶联的门的离子通道,这些门被约束为交替打开和关闭。海洋毒素 palytoxin 破坏了这种偶联作用,使两个门有时都打开,从而暂时将泵转化为离子通道。我们对钠钾-ATP 酶跨膜(TM)片段 TM1 到 TM6 进行了半胱氨酸扫描,并使用结合 palytoxin 的泵通道中钠离子电流的记录来监测引入的半胱氨酸残基通过与亲水性甲硫基磺酸盐(MTS)试剂的反应的可及性。为了可视化开放通道途径,将反应位置映射到基于相关肌浆内质网(SERCA)Ca2+-ATPase 在 BeF3-捕获状态下的结构的钠钾-ATPase同源模型上,(1、2)其中细胞外门是完全打开的(尽管细胞质进入途径是紧闭的)。结果显示,一条从细胞外表面到细胞质的连续的反应位置链穿过泵,由 TM1、TM2、TM4 和 TM6 的残基组成,并穿过 SERCA 中的阳离子结合位点 II,但不穿过位点 I。同源模型的腔搜索分析通过产生由 MTS 反应性残基包围的计算细胞外途径来验证其用于映射数据的用途。正如先前的实验结果所预测的那样,该计算的细胞外途径在 TM6 的最外端残基 T806 处突然变宽,TM6 形成细胞外侧前庭的底部。这些发现为进一步了解钠钾-ATP 酶和其他 P 型泵(如钙和 H+-ATP 酶)的阳离子转运提供了结构基础。