Dupuy Adam J, Rogers Laura M, Kim Jinsil, Nannapaneni Kishore, Starr Timothy K, Liu Pentao, Largaespada David A, Scheetz Todd E, Jenkins Nancy A, Copeland Neal G
Department of Anatomy and Cell Biology, Center for Bioinformatics, Computational Biology and Biomedical Engineering, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA.
Cancer Res. 2009 Oct 15;69(20):8150-6. doi: 10.1158/0008-5472.CAN-09-1135. Epub 2009 Oct 6.
Recent advances in cancer therapeutics stress the need for a better understanding of the molecular mechanisms driving tumor formation. This can be accomplished by obtaining a more complete description of the genes that contribute to cancer. We previously described an approach using the Sleeping Beauty (SB) transposon system to model hematopoietic malignancies in mice. Here, we describe modifications of the SB system that provide additional flexibility in generating mouse models of cancer. First, we describe a Cre-inducible SBase allele, RosaSBase(LsL), that allows the restriction of transposon mutagenesis to a specific tissue of interest. This allele was used to generate a model of germinal center B-cell lymphoma by activating SBase expression with an Aid-Cre allele. In a second approach, a novel transposon was generated, T2/Onc3, in which the CMV enhancer/chicken beta-actin promoter drives oncogene expression. When combined with ubiquitous SBase expression, the T2/Onc3 transposon produced nearly 200 independent tumors of more than 20 different types in a cohort of 62 mice. Analysis of transposon insertion sites identified novel candidate genes, including Zmiz1 and Rian, involved in squamous cell carcinoma and hepatocellular carcinoma, respectively. These novel alleles provide additional tools for the SB system and provide some insight into how this mutagenesis system can be manipulated to model cancer in mice.
癌症治疗学的最新进展强调了更深入了解驱动肿瘤形成的分子机制的必要性。这可以通过更全面地描述促成癌症的基因来实现。我们之前描述了一种使用睡美人(SB)转座子系统在小鼠中模拟血液系统恶性肿瘤的方法。在此,我们描述了对SB系统的改进,这些改进在生成癌症小鼠模型方面提供了额外的灵活性。首先,我们描述了一种Cre诱导型SBase等位基因,即RosaSBase(LsL),它允许将转座子诱变限制在特定的感兴趣组织中。该等位基因通过用Aid-Cre等位基因激活SBase表达来生成生发中心B细胞淋巴瘤模型。在第二种方法中,产生了一种新型转座子T2/Onc3,其中CMV增强子/鸡β-肌动蛋白启动子驱动癌基因表达。当与普遍存在的SBase表达相结合时,T2/Onc3转座子在62只小鼠群体中产生了近200个超过20种不同类型的独立肿瘤。对转座子插入位点的分析确定了新的候选基因,包括分别参与鳞状细胞癌和肝细胞癌的Zmiz1和Rian。这些新的等位基因为SB系统提供了额外的工具,并为如何操纵这种诱变系统在小鼠中模拟癌症提供了一些见解。