Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis-St. Paul, MN, USA.
IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Sep;56(9):1888-902. doi: 10.1109/TUFFC.2009.1265.
Beamforming artifacts due to coarse discretization of imaging apertures represent a significant barrier against the use of array probes in high-frequency applications. Nyquist sampling of array apertures dictates center-to-center spacing of lambda/2 for elimination of grating lobes in the array pattern. However, this requirement is hard to achieve using current transducer technologies, even at the lower end of high-frequency ultrasonic imaging (in the range 25-35 MHz). In this paper, we present a new design approach for 2-D regularized pseudoinverse (PIO) filters suitable for restoring imaging contrast in systems employing coarsely sampled arrays. The approach is based on a discretized 2-D imaging model for linear arrays assuming scattering from a Cartesian grid in the imaging field of view (FOV). We show that the discretized imaging operator can be represented with a block Toeplitz matrix with the blocks themselves being Toeplitz. With sufficiently large grid size in the axial and lateral directions, it is possible to replace this Toeplitz-block block Toeplitz (TBBT) operator with its circulant-block block circulant (CBBC) equivalent. This leads to a computationally efficient implementation of the regularized pseudoinverse filtering approach using the 2-D fast Fourier transform (FFT). The derivation of the filtering equation is shown in detail and the regularization procedure is fully described. Using FIELD, we present simulation data to show the 2-D point-spread functions (PSFs) for imaging systems employing linear arrays with fine and coarse sampling of the imaging aperture. PSFs are also computed for a coarsely sampled array with different levels of regularization to demonstrate the tradeoff between contrast and spatial resolution. These results demonstrate the well-behaved nature of the PSF with the variation in a single regularization parameter. Specifically, the 6 dB axial and lateral dimensions of the PSF increase gradually with increasing value of the regularization parameter. On the other hand, the peak grating lobe level decreases gradually with increasing value of the regularization parameter. The results are supported by image reconstructions from a simulated cyst phantom obtained using finely and coarsely sampled apertures with and without the application of the regularized 2-D PIO.
由于成像孔径的粗离散化导致的波束形成伪影是阵列探头在高频应用中应用的一个重大障碍。阵列孔径的奈奎斯特采样要求中心到中心的间隔为 lambda/2,以消除阵列图案中的栅瓣。然而,即使在较低的高频超声成像端(在 25-35MHz 范围内),使用当前的换能器技术也很难实现这一要求。在本文中,我们提出了一种新的二维正则化伪逆(PIO)滤波器设计方法,适用于恢复采用粗采样阵列的系统中的成像对比度。该方法基于线性阵列的离散二维成像模型,假设在视场(FOV)中成像的笛卡尔网格上发生散射。我们表明,离散化的成像算子可以用块 Toeplitz 矩阵表示,其中块本身是 Toeplitz 的。在轴向和横向方向上具有足够大的网格尺寸,可以用其循环块块循环(CBBC)等效物代替此 Toeplitz 块块 Toeplitz(TBBT)算子。这导致使用二维快速傅里叶变换(FFT)对正则化伪逆滤波方法进行高效的计算实现。详细说明了滤波方程的推导,并充分描述了正则化过程。使用 FIELD,我们展示了模拟数据,以显示采用精细和粗采样成像孔径的线性阵列的成像系统的二维点扩散函数(PSF)。还针对不同正则化水平的粗采样阵列计算了 PSF,以演示对比度和空间分辨率之间的权衡。这些结果证明了 PSF 的良好行为,其单个正则化参数的变化。具体来说,随着正则化参数值的增加,PSF 的 6dB 轴向和横向尺寸逐渐增加。另一方面,随着正则化参数值的增加,峰值栅瓣电平逐渐降低。这些结果得到了使用精细和粗采样孔径以及应用和不应用正则化二维 PIO 从模拟囊肿幻影获得的图像重建的支持。