Suppr超能文献

最小方差波束形成与自适应相干加权在医学超声成像中的应用。

Minimum variance beamforming combined with adaptive coherence weighting applied to medical ultrasound imaging.

机构信息

Department of Biomedical Engineering, Tarbiat Modares University, Tehran, Iran.

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Sep;56(9):1923-31. doi: 10.1109/TUFFC.2009.1268.

Abstract

Currently, the nonadaptive delay-and-sum (DAS) beamformer is used in medical ultrasound imaging. However, due to its data-independent nature, DAS leads to images with limited resolution and contrast. In this paper, an adaptive minimum variance (MV)-based beamformer that combines the MV and coherence factor (CF) weighting is introduced and adapted to medical ultrasound imaging. MV-adaptive beamformers can improve the image quality in terms of resolution and sidelobes by suppressing off-axis signals, while keeping onaxis ones. In addition, CF weighting can improve contrast and sidelobes by emphasizing the in-phase signals and reducing the out-of-phase ones. Combining MV and CF weighting results in simultaneous improvement of imaging resolution and contrast, outperforming both DAS and MV beamformers. In addition, because of the power of CF in reducing the focusing errors, the proposed method presents satisfactory robustness against sound velocity inhomogeneities, outperforming the regularized MV beamformer. The excellent performance of the proposed beamforming approach is demonstrated by several simulated examples.

摘要

目前,在医学超声成象中使用非自适应延迟求和(DAS)波束形成器。然而,由于其数据独立的性质,DAS 导致图像的分辨率和对比度有限。在本文中,介绍了一种自适应最小方差(MV)基波束形成器,该波束形成器结合了 MV 和相干因子(CF)加权,并适用于医学超声成象。MV 自适应波束形成器可以通过抑制离轴信号来提高图像的分辨率和旁瓣质量,同时保持轴上信号。此外,CF 加权可以通过强调同相信号和减少反相信号来提高对比度和旁瓣。MV 和 CF 加权的结合可以同时提高成像分辨率和对比度,优于 DAS 和 MV 波束形成器。此外,由于 CF 具有降低聚焦误差的能力,因此该方法在声速不均匀性方面具有令人满意的鲁棒性,优于正则化 MV 波束形成器。通过几个模拟示例证明了所提出的波束形成方法的优异性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验