Suppr超能文献

基于孔径谱分离主瓣和旁瓣对B模式超声图像的贡献。

Separation of mainlobe and sidelobe contributions to B-mode ultrasound images based on the aperture spectrum.

作者信息

Ali Rehman, Mitcham Trevor, Brickson Leandra, Hu Wentao, Doyley Marvin, Rubens Deborah, Ignjatovic Zeljko, Duric Nebojsa, Dahl Jeremy

机构信息

University of Rochester Medical Center, Department of Imaging Sciences, Rochester, New York, United States.

Stanford University School of Medicine, Department of Radiology, Palo Alto, California, United States.

出版信息

J Med Imaging (Bellingham). 2022 Nov;9(6):067001. doi: 10.1117/1.JMI.9.6.067001. Epub 2022 Nov 1.

Abstract

PURPOSE

Isolating the mainlobe and sidelobe contribution to the ultrasound image can improve imaging contrast by removing off-axis clutter. Previous work achieves this separation of mainlobe and sidelobe contributions based on the covariance of received signals. However, the formation of a covariance matrix at each imaging point can be computationally burdensome and memory intensive for real-time applications. Our work demonstrates that the mainlobe and sidelobe contributions to the ultrasound image can be isolated based on the receive aperture spectrum, greatly reducing computational and memory requirements.

APPROACH

The separation of mainlobe and sidelobe contributions to the ultrasound image is shown in simulation, , and using the aperture spectrum method and multicovariate imaging of subresolution targets (MIST). Contrast, contrast-to-noise-ratio (CNR), and speckle signal-to-noise-ratio are used to compare the aperture spectrum approach with MIST and conventional delay-and-sum (DAS) beamforming.

RESULTS

The aperture spectrum approach improves contrast by 1.9 to 6.4 dB beyond MIST and 8.9 to 13.5 dB beyond conventional DAS B-mode imaging. However, the aperture spectrum approach yields speckle texture similar to DAS. As a result, the aperture spectrum-based approach has less CNR than MIST but greater CNR than conventional DAS. The CPU implementation of the aperture spectrum-based approach is shown to reduce computation time by a factor of 9 and memory consumption by a factor of 128 for a 128-element transducer.

CONCLUSIONS

The mainlobe contribution to the ultrasound image can be isolated based on the receive aperture spectrum, which greatly reduces the computational cost and memory requirement of this approach as compared with MIST.

摘要

目的

分离主瓣和旁瓣对超声图像的贡献,可通过去除离轴杂波来提高成像对比度。先前的工作基于接收信号的协方差实现了主瓣和旁瓣贡献的这种分离。然而,对于实时应用而言,在每个成像点形成协方差矩阵可能在计算上非常繁重且内存需求很大。我们的工作表明,基于接收孔径谱可以分离主瓣和旁瓣对超声图像的贡献,从而大大降低计算和内存需求。

方法

使用孔径谱方法和亚分辨率目标多协变量成像(MIST),在模拟中展示了主瓣和旁瓣对超声图像贡献的分离。使用对比度、对比噪声比(CNR)和散斑信噪比来比较孔径谱方法与MIST以及传统延迟求和(DAS)波束形成。

结果

孔径谱方法比MIST提高对比度1.9至6.4dB,比传统DAS B模式成像提高8.9至13.5dB。然而,孔径谱方法产生的散斑纹理与DAS相似。因此,基于孔径谱的方法的CNR比MIST小,但比传统DAS大。对于128阵元换能器,基于孔径谱方法的CPU实现显示计算时间减少了9倍,内存消耗减少了128倍。

结论

基于接收孔径谱可以分离主瓣对超声图像的贡献,与MIST相比,这大大降低了该方法的计算成本和内存需求。

相似文献

2
Adaptive Models for Multi-Covariate Imaging of Sub-Resolution Targets (MIST).多变量亚分辨率目标成像(MIST)的自适应模型。
IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Jul;69(7):2303-2317. doi: 10.1109/TUFFC.2022.3178035. Epub 2022 Jun 30.
3
Adaptive imaging using an optimal receive aperture size.使用最佳接收孔径大小的自适应成像。
Ultrason Imaging. 2005 Apr;27(2):111-27. doi: 10.1177/016173460502700205.
4
Synthetic Aperture Focusing for Multi-Covariate Imaging of Sub-Resolution Targets.多变量亚分辨率目标的合成孔径聚焦成像。
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Jun;67(6):1166-1177. doi: 10.1109/TUFFC.2020.2966116. Epub 2020 Jan 13.
5
Intrinsic Tradeoffs in Multi-Covariate Imaging of Sub-Resolution Targets.亚分辨率目标的多变量成像中的固有权衡。
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Oct;67(10):1980-1992. doi: 10.1109/TUFFC.2020.2993241. Epub 2020 May 8.
6
Broadband optimal contrast resolution beamforming.宽带最优对比分辨率波束形成。
Ultrasonics. 2012 Mar;52(3):387-401. doi: 10.1016/j.ultras.2011.09.005. Epub 2011 Sep 22.

本文引用的文献

1
Intrinsic Tradeoffs in Multi-Covariate Imaging of Sub-Resolution Targets.亚分辨率目标的多变量成像中的固有权衡。
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Oct;67(10):1980-1992. doi: 10.1109/TUFFC.2020.2993241. Epub 2020 May 8.
2
Synthetic Aperture Focusing for Multi-Covariate Imaging of Sub-Resolution Targets.多变量亚分辨率目标的合成孔径聚焦成像。
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Jun;67(6):1166-1177. doi: 10.1109/TUFFC.2020.2966116. Epub 2020 Jan 13.
3
Extending Retrospective Encoding for Robust Recovery of the Multistatic Data Set.扩展回溯编码以实现稳健的多基地数据集恢复。
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 May;67(5):943-956. doi: 10.1109/TUFFC.2019.2961875. Epub 2019 Dec 23.
4
Computationally Efficient Implementation of Aperture Domain Model Image Reconstruction.孔径域模型图像重建的计算高效实现。
IEEE Trans Ultrason Ferroelectr Freq Control. 2019 Oct;66(10):1546-1559. doi: 10.1109/TUFFC.2019.2924824. Epub 2019 Jun 26.
5
Multi-covariate Imaging of Sub-resolution Targets.亚分辨率目标的多变量成像。
IEEE Trans Med Imaging. 2019 Jul;38(7):1690-1700. doi: 10.1109/TMI.2019.2917021. Epub 2019 May 15.
6
Spatial Prediction Filtering for Medical Ultrasound in Aberration and Random Noise.用于医学超声在像差和随机噪声中的空间预测滤波
IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Oct;65(10):1845-1856. doi: 10.1109/TUFFC.2018.2860962. Epub 2018 Aug 1.
7
Recovery of the Complete Data Set From Focused Transmit Beams.从聚焦发射波束中恢复完整数据集。
IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Jan;65(1):30-38. doi: 10.1109/TUFFC.2017.2773495.
9
Efficient Strategies for Estimating the Spatial Coherence of Backscatter.提高反向散射空间相干性估计效率的策略。
IEEE Trans Ultrason Ferroelectr Freq Control. 2017 Mar;64(3):500-513. doi: 10.1109/TUFFC.2016.2634004. Epub 2016 Dec 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验