Suppr超能文献

基于马尔可夫随机场模型的磁共振图像多发性硬化病变分割

[Segmentation of multiple sclerosis lesions based on Markov random fields model for MR images].

作者信息

Li Bin, Chen Wufan

机构信息

School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2009 Aug;26(4):861-5.

Abstract

Multiple sclerosis (MS) is an inflammatory demyelinating disease that would damage central nervous system. There is a growing attention to the segmentation algorithms of MS Lesions. An MRF-based algorithm for MS lesions segmentation of T2-weighted MR brain images is developed by utilizing the morphological characteristics of MS lesion tissues. The regions circumscribed by white matter are extracted at first by MRF-based segmentation and region growing methods; the abstracted regions are then segmented again using MRF-based algorithm. The segmented MS lesions of both simulated and clinical T2-weighted MR brain images are presented in the current work. The testing results show that the proposed algorithm is robust and accurate enough for clinical use.

摘要

多发性硬化症(MS)是一种会损害中枢神经系统的炎性脱髓鞘疾病。人们对MS病灶的分割算法越来越关注。通过利用MS病灶组织的形态学特征,开发了一种基于马尔可夫随机场(MRF)的T2加权磁共振脑图像MS病灶分割算法。首先通过基于MRF的分割和区域生长方法提取由白质界定的区域;然后使用基于MRF的算法对提取的区域进行再次分割。当前工作展示了模拟和临床T2加权磁共振脑图像的分割MS病灶。测试结果表明,所提出的算法对于临床应用具有足够的鲁棒性和准确性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验