Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark.
Semin Cell Dev Biol. 2010 Apr;21(2):231-7. doi: 10.1016/j.semcdb.2009.09.018. Epub 2009 Oct 6.
In dividing cells genome stability and function rely on faithful transmission of both DNA sequence and its organization into chromatin. In the course of DNA replication chromatin undergoes transient genome-wide disruption followed by restoration on new DNA. This involves tight coordination of DNA replication and chromatin assembly processes in time and space. Dynamic recycling and de novo deposition of histones are fundamental for chromatin restoration. Histone post-translational modifications (PTMs) are thought to have a causal role in establishing distinct chromatin structures. Here we discuss PTMs present on new and parental histones and how they influence genome stability and restoration of epigenetically defined domains. Newly deposited histones must change their signature in the process of chromatin restoration, this may occur in a step-wise fashion involving replication-coupled processes and information from recycled parental histones.
在细胞分裂过程中,基因组的稳定性和功能依赖于 DNA 序列及其在染色质中的组织的准确传递。在 DNA 复制过程中,染色质会经历短暂的全基因组破坏,然后在新的 DNA 上进行修复。这涉及到 DNA 复制和染色质组装过程在时间和空间上的紧密协调。组蛋白的动态循环和从头沉积对于染色质修复至关重要。组蛋白的翻译后修饰(PTMs)被认为在建立不同的染色质结构中起因果作用。在这里,我们讨论了新的和母代组蛋白上存在的 PTMs ,以及它们如何影响基因组的稳定性和表观遗传定义的结构域的修复。在染色质修复过程中,新沉积的组蛋白必须改变其特征,这可能以涉及复制偶联过程和来自回收母代组蛋白的信息的逐步方式发生。