Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, USA.
Inorg Chem. 2009 Nov 16;48(22):10769-79. doi: 10.1021/ic901177c.
The aqueous chemistry of Ti(IV) with biological ligands siderophores and tunichromes is modeled by using N,N'-dialkyl-2,3-dihydroxyterephthalamides (alTAMs), analogues of catecholamide-containing biomolecules, and 1-hydroxy-2(1H)-pyridinone (1,2-HOPO), an analogue of hydroxamate-containing biomolecules. Both types of ligands stabilize Ti(IV) with respect to hydrolytic precipitation, and afford tractable complexes. Complexes with the methyl derivative of alTAM, meTAM, are characterized by using mass spectrometry and UV/vis spectroscopy. Complexes with etTAM are characterized by the same techniques as well as X-ray crystallography, cyclic voltammetry, and spectropotentiomeric titration. The ESI mass spectra of these complexes in water show both 1:2 and 1:3 metal/ligand species. The X-ray crystal structure of a 1:2 complex, K(2)[Ti(etTAM)(2)(OCH(3))(2)].2CH(3)OH (1), is reported. The midpoint potential for reduction of 1 dissolved in solution is -0.98 V. A structure for a 1:3 Ti/etTAM species, Na(2)[Ti(etTAM)(3)] demonstrates the coordination and connectivity in that complex. Spectropotentiometric titrations in water reveal three metal-containing species in solution between pH 3 and 10. 1,2-HOPO supports Ti(IV) complexes that are stable and soluble in aqueous solution. The bis-HOPO complex [Ti(1,2-HOPO)(2)(OCH(3))(2)] (5) was characterized by X-ray crystallography and by mass spectrometry in solution, and the tris-HOPO dimer [(1,2-HOPO)(3)TiOTi(1,2-HOPO)(3)] (6) was characterized by X-ray crystallography. Taken together, these experiments explore the characteristics of complexes that may form between siderophores and tunichromes with Ti(IV) in biology and in the environment, and guide efforts toward new, well characterized aqueous Ti(IV) complexes. By revealing the identities and some characteristics of complexes that form under a variety of conditions, these studies further our understanding of the complicated nature of aqueous titanium coordination chemistry.
采用 N,N'-二烷基-2,3-二羟基邻苯二甲酰胺(alTAMs)和 1-羟基-2(1H)-吡啶酮(1,2-HOPO)模拟 Ti(IV)与生物配体铁载体和 tunichromes 的水相化学。这两种配体都能稳定 Ti(IV),防止水解沉淀,并生成易于处理的配合物。使用质谱和紫外/可见光谱对 alTAM 的甲基衍生物 meTAM 形成的配合物进行了表征。通过相同的技术以及 X 射线晶体学、循环伏安法和分光电位滴定对 etTAM 形成的配合物进行了表征。这些配合物在水中的 ESI 质谱显示出 1:2 和 1:3 的金属/配体物种。报道了 1:2 配合物 K(2)[Ti(etTAM)(2)(OCH(3))(2)].2CH(3)OH(1)的 X 射线晶体结构。溶解在溶液中的 1 的中点还原电势为-0.98 V。Na(2)[Ti(etTAM)(3)]中 1:3 Ti/etTAM 物种的结构证明了该配合物的配位和连接。水相分光电位滴定在 pH 3 至 10 之间揭示了溶液中三种含金属的物种。1,2-HOPO 支持 Ti(IV)配合物,这些配合物在水溶液中稳定且可溶。双 HOPO 配合物 [Ti(1,2-HOPO)(2)(OCH(3))(2)](5)通过 X 射线晶体学和溶液中的质谱进行了表征,三 HOPO 二聚体 [(1,2-HOPO)(3)TiOTi(1,2-HOPO)(3)](6)通过 X 射线晶体学进行了表征。这些实验一起探索了铁载体和 tunichromes 与生物和环境中的 Ti(IV)形成的配合物的特性,并指导了新的、具有良好特征的水溶性 Ti(IV)配合物的研究。通过揭示各种条件下形成的配合物的身份和一些特性,这些研究进一步加深了我们对水合钛配位化学复杂性的理解。