Suppr超能文献

基于电子俘获解离质谱技术生成的蛋白质组学数据集的数据库搜索策略。

Database search strategies for proteomic data sets generated by electron capture dissociation mass spectrometry.

机构信息

School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.

出版信息

J Proteome Res. 2009 Dec;8(12):5475-84. doi: 10.1021/pr9008282.

Abstract

Large data sets of electron capture dissociation (ECD) mass spectra from proteomic experiments are rich in information; however, extracting that information in an optimal manner is not straightforward. Protein database search engines currently available are designed for low resolution CID data, from which Fourier transform ion cyclotron resonance (FT-ICR) ECD data differs significantly. ECD mass spectra contain both z-prime and z-dot fragment ions (and c-prime and c-dot); ECD mass spectra contain abundant peaks derived from neutral losses from charge-reduced precursor ions; FT-ICR ECD spectra are acquired with a larger precursor m/z isolation window than their low-resolution CID counterparts. Here, we consider three distinct stages of postacquisition analysis: (1) processing of ECD mass spectra prior to the database search; (2) the database search step itself and (3) postsearch processing of results. We demonstrate that each of these steps has an effect on the number of peptides identified, with the postsearch processing of results having the largest effect. We compare two commonly used search engines: Mascot and OMSSA. Using an ECD data set of modest size (3341 mass spectra) from a complex sample (mouse whole cell lysate), we demonstrate that search results can be improved from 630 identifications (19% identification success rate) to 1643 identifications (49% identification success rate). We focus in particular on improving identification rates for doubly charged precursors, which are typically low for ECD fragmentation. We compare our presearch processing algorithm with a similar algorithm recently developed for electron transfer dissociation (ETD) data.

摘要

大量的蛋白质组学实验电子捕获解离(ECD)质谱数据集富含信息;然而,以最佳方式提取这些信息并不简单。目前可用的蛋白质数据库搜索引擎是为低分辨率 CID 数据设计的,而傅里叶变换离子回旋共振(FT-ICR)ECD 数据与之有很大的不同。ECD 质谱包含 z-prime 和 z-dot 片段离子(以及 c-prime 和 c-dot);ECD 质谱包含大量源自电荷减少前体离子中性丢失的峰;FT-ICR ECD 光谱的前体 m/z 隔离窗口比其低分辨率 CID 对应物大。在这里,我们考虑了三个不同的后采集分析阶段:(1)数据库搜索前的 ECD 质谱处理;(2)数据库搜索本身;(3)搜索结果的后处理。我们证明,这些步骤中的每一步都对鉴定的肽数量有影响,其中搜索结果的后处理影响最大。我们比较了两种常用的搜索引擎:Mascot 和 OMSSA。使用来自复杂样品(小鼠全细胞裂解物)的中等大小的 ECD 数据集(3341 个质谱),我们证明搜索结果可以从 630 个鉴定(19%的鉴定成功率)提高到 1643 个鉴定(49%的鉴定成功率)。我们特别关注提高 ECD 碎片化时通常较低的双电荷前体的鉴定率。我们将我们的预搜索处理算法与最近为电子转移解离(ETD)数据开发的类似算法进行了比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ace/2788916/0c50f396c295/pr-2009-008282_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验