Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia.
IEEE Trans Biomed Eng. 2010 Mar;57(3):714-21. doi: 10.1109/TBME.2009.2033389. Epub 2009 Oct 9.
A suspension system for the BiVACOR biventricular assist device (BiVAD) has been developed and tested. The device features two semi-open centrifugal impellers mounted on a common rotating hub. Flow balancing is achieved through the movement of the rotor in the axial direction. The rotor is suspended in the pump casings by an active magnetic suspension system in the axial direction and a passive hydrodynamic bearing in the radial direction. This paper investigates the axial movement capacity of the magnetic bearing system and the power consumption at various operating points. The force capacity of the passive hydrodynamic bearing is investigated using a viscous glycerol solution. Axial rotor movement in the range of +/-0.15 mm is confirmed and power consumption is under 15.5 W. The journal bearing is shown to stabilize the rotor in the radial direction at the required operating speed. Magnetic levitation is a viable suspension technique for the impeller of an artificial heart to improve device lifetime and reduce blood damage.
已经开发和测试了一种用于 BiVACOR 双心室辅助装置(BiVAD)的悬浮系统。该装置的特点是两个半开式离心叶轮安装在一个共同的旋转轮毂上。通过转子在轴向的运动实现流量平衡。转子通过主动磁悬浮系统在轴向和被动流体动力轴承在径向悬浮在泵壳中。本文研究了磁悬浮系统的轴向运动能力和在不同工作点的功耗。使用粘性甘油溶液研究了被动流体动力轴承的力容量。确认了在 +/-0.15 毫米范围内的转子轴向运动,功耗低于 15.5 W。证明了向心轴承能够在所需的工作速度下稳定转子的径向位置。磁悬浮是人工心脏叶轮的一种可行的悬浮技术,可以提高装置的使用寿命并减少血液损伤。