Suppr超能文献

一种新颖的混合线性/非线性分类器用于二类分类:理论、算法及应用。

A novel hybrid linear/nonlinear classifier for two-class classification: theory, algorithm, and applications.

机构信息

Division of Imaging and Applied Mathematics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD 20993 USA.

出版信息

IEEE Trans Med Imaging. 2010 Feb;29(2):428-41. doi: 10.1109/TMI.2009.2033596. Epub 2009 Oct 9.

Abstract

Classifier design for a given classification task needs to take into consideration both the complexity of the classifier and the size of the dataset that is available for training the classifier. With limited training data, as often is the situation in computer-aided diagnosis of medical images, a classifier with simple structure (e.g., a linear classifier) is more robust and therefore preferred. We propose a novel two-class classifier, which we call a hybrid linear/nonlinear classifier (HLNLC), that involves two stages: the input features are linearly combined to form a scalar variable in the first stage and then the likelihood ratio of the scalar variable is used as the decision variable for classification. We first develop the theory of HLNLC by assuming that the feature data follow normal distributions. We show that the commonly used Fisher's linear discriminant function is generally not the optimal linear function in the first stage of the HLNLC. We formulate an optimization problem to solve for the optimal linear function in the first stage of the HLNLC, i.e., the linear function that maximizes the area under the receiver operating characteristic (ROC) curve of the HLNLC. For practical applications, we propose a robust implementation of the HLNLC by making a loose assumption that the two-class feature data arise from a pair of latent (rather than explicit) multivariate normal distributions. The novel hybrid classifier fills a gap between linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA) in the sense that both its theoretical performance and its complexity lie between those of the LDA and those of the QDA. Simulation studies show that the hybrid linear/nonlinear classifier performs better than LDA without increasing the classifier complexity accordingly. With a finite number of training samples, the HLNLC can perform better than that of the ideal observer due to its simplicity. Finally, we demonstrate the application of the HLNLC in computer-aided diagnosis of breast lesions in ultrasound images.

摘要

对于给定的分类任务,分类器的设计需要考虑分类器的复杂性和用于训练分类器的数据集的大小。在计算机辅助医学图像诊断中,经常会遇到训练数据有限的情况,此时具有简单结构(例如线性分类器)的分类器更稳健,因此更受欢迎。我们提出了一种新的二类分类器,称为混合线性/非线性分类器(HLNLC),它包括两个阶段:在第一阶段,输入特征线性组合形成标量变量,然后使用标量变量的似然比作为分类的决策变量。我们首先通过假设特征数据服从正态分布来推导出 HLNLC 的理论。我们表明,常用的 Fisher 线性判别函数通常不是 HLNLC 第一阶段的最优线性函数。我们提出了一个优化问题,以求解 HLNLC 第一阶段的最优线性函数,即最大化 HLNLC 的接收器工作特征(ROC)曲线下面积的线性函数。对于实际应用,我们通过做出一个宽松的假设来提出 HLNLC 的稳健实现,即两个类别的特征数据来自一对潜在(而不是显式)多元正态分布。该新型混合分类器填补了线性判别分析(LDA)和二次判别分析(QDA)之间的空白,因为它的理论性能和复杂性介于 LDA 和 QDA 之间。模拟研究表明,混合线性/非线性分类器在不相应增加分类器复杂性的情况下,比 LDA 性能更好。在有限数量的训练样本的情况下,HLNLC 由于其简单性,可以比理想观察者表现更好。最后,我们演示了 HLNLC 在超声图像中计算机辅助诊断乳房病变中的应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验