Suppr超能文献

HIV-1中的一个重组热点包含可形成G-四联体结构并在体外促进链转移的鸟苷序列。

A recombination hot spot in HIV-1 contains guanosine runs that can form a G-quartet structure and promote strand transfer in vitro.

作者信息

Shen Wen, Gao Lu, Balakrishnan Mini, Bambara Robert A

机构信息

Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA.

出版信息

J Biol Chem. 2009 Dec 4;284(49):33883-93. doi: 10.1074/jbc.M109.055368. Epub 2009 Oct 12.

Abstract

The co-packaged RNA genomes of human immunodeficiency virus-1 recombine at a high rate. Recombination can mix mutations to generate viruses that escape immune response. A cell-culture-based system was designed previously to map recombination events in a 459-bp region spanning the primer binding site through a portion of the gag protein coding region. Strikingly, a strong preferential site for recombination in vivo was identified within a 112-nucleotide-long region near the beginning of gag. Strand transfer assays in vitro revealed that three pause bands in the gag hot spot each corresponded to a run of guanosine (G) residues. Pausing of reverse transcriptase is known to promote recombination by strand transfer both in vivo and in vitro. To assess the significance of the G runs, we altered them by base substitutions. Disruption of the G runs eliminated both the associated pausing and strand transfer. Some G-rich sequences can develop G-quartet structures, which were first proposed to form in telomeric DNA. G-quartet structure formation is highly dependent on the presence of specific cations. Incubation in cations discouraging G-quartets altered gel mobility of the gag template consistent with breakdown of G-quartet structure. The same cations faded G-run pauses but did not affect pauses caused by hairpins, indicating that quartet structure causes pausing. Moreover, gel analysis with cations favoring G-quartet structure indicated no structure in mutated templates. Overall, results point to reverse transcriptase pausing at G runs that can form quartets as a unique feature of the gag recombination hot spot.

摘要

人类免疫缺陷病毒1型(HIV-1)的共包装RNA基因组以高频率发生重组。重组可混合突变以产生逃避免疫反应的病毒。先前设计了一种基于细胞培养的系统,用于绘制跨越引物结合位点至部分gag蛋白编码区的459碱基对区域内的重组事件。引人注目的是,在gag起始附近一个112个核苷酸长的区域内,鉴定出了一个体内重组的强烈优先位点。体外链转移试验表明,gag热点中的三个暂停带各自对应于一段鸟苷(G)残基。已知逆转录酶的暂停在体内和体外均通过链转移促进重组。为了评估G序列的重要性,我们通过碱基替换改变了它们。G序列的破坏消除了相关的暂停和链转移。一些富含G的序列可形成G-四联体结构,最初认为这种结构形成于端粒DNA中。G-四联体结构的形成高度依赖于特定阳离子的存在。在不利于G-四联体形成的阳离子中孵育,会改变gag模板的凝胶迁移率,这与G-四联体结构的破坏一致。相同的阳离子使G序列暂停消失,但不影响发夹结构引起的暂停,表明四联体结构导致暂停。此外,用有利于G-四联体结构的阳离子进行凝胶分析表明,突变模板中没有结构。总体而言,结果表明逆转录酶在可形成四联体的G序列处暂停是gag重组热点的一个独特特征。

相似文献

引用本文的文献

7
G-Quadruplexes: More Than Just a Kink in Microbial Genomes.G-四链体:微生物基因组中的不只是一个扭结。
Trends Microbiol. 2019 Feb;27(2):148-163. doi: 10.1016/j.tim.2018.08.011. Epub 2018 Sep 14.
8
G-quadruplexes in pathogens: a common route to virulence control?病原体中的G-四链体:控制毒力的常见途径?
PLoS Pathog. 2015 Feb 5;11(2):e1004562. doi: 10.1371/journal.ppat.1004562. eCollection 2015 Feb.

本文引用的文献

1
G-quadruplex nucleic acids as therapeutic targets.作为治疗靶点的G-四链体核酸
Curr Opin Chem Biol. 2009 Jun;13(3):345-53. doi: 10.1016/j.cbpa.2009.04.637. Epub 2009 Jun 8.
3
Strand transfer events during HIV-1 reverse transcription.HIV-1逆转录过程中的链转移事件。
Virus Res. 2008 Jun;134(1-2):19-38. doi: 10.1016/j.virusres.2007.12.017. Epub 2008 Feb 14.
4
APOBEC3 proteins and reverse transcription.载脂蛋白B编辑酶催化多肽样蛋白3(APOBEC3)家族蛋白与逆转录
Virus Res. 2008 Jun;134(1-2):74-85. doi: 10.1016/j.virusres.2007.12.022. Epub 2008 Feb 11.
6
Replication fork stalling at natural impediments.复制叉在天然障碍处停滞。
Microbiol Mol Biol Rev. 2007 Mar;71(1):13-35. doi: 10.1128/MMBR.00030-06.
8
HIV-1 matrix protein: a mysterious regulator of the viral life cycle.HIV-1基质蛋白:病毒生命周期的神秘调节因子。
Virus Res. 2007 Mar;124(1-2):1-11. doi: 10.1016/j.virusres.2006.07.001. Epub 2007 Jan 8.
9
G-quadruplexes in promoters throughout the human genome.人类基因组中启动子区域的G-四链体
Nucleic Acids Res. 2007;35(2):406-13. doi: 10.1093/nar/gkl1057. Epub 2006 Dec 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验