Suppr超能文献

何时以及为何使用氨基酸?

When and why amino acids?

机构信息

Physiology Department, McGill University, Montréal, Québec, Canada H3G 1Y6.

出版信息

J Physiol. 2010 Jan 1;588(Pt 1):33-44. doi: 10.1113/jphysiol.2009.176990. Epub 2009 Oct 12.

Abstract

This article reviews especially the early history of glutamate and GABA as neurotransmitters in vertebrates. The proposal that some amino acids could mediate synaptic transmission in the CNS initially met with much resistance. Both GABA and its parent glutamate are abundant in the brain; but, unlike glutamate, GABA had no obvious metabolic function. By the late 1950s, the switch of interest from electrical to chemical transmission invigorated the search for central transmitters. Its identification with Factor I, a brain extract that inhibited crustacean muscle, focused interest on GABA as a possible inhibitory transmitter. In the first microiontophoretic tests, though GABA strongly inhibited spinal neurons, these effects were considered 'non-specific'. Strong excitation by glutamate (and other acidic amino acids) led to the same conclusion. However, their great potency and rapid actions on cortical neurons convinced other authors that these endogenous amino acids are probably synaptic transmitters. This was partly confirmed by showing that both IPSPs and GABA greatly increased Cl() conductance, their effects having similar reversal potentials. Many anticonvulsants proving to be GABA antagonists, by the 1970s GABA became widely accepted as a mediator of IPSPs. Progress was much slower for glutamate. Being generated on distant dendrites, EPSPs could not be easily compared with glutamate-induced excitation, and the search for specific antagonists was long hampered by the lack of blockers and the variety of glutamate receptors. These difficulties were gradually overcome by the application of powerful techniques, such as single channel recording, cloning receptors, as well as new pharmacological tools.

摘要

本文特别回顾了谷氨酸和 GABA 在脊椎动物中作为神经递质的早期历史。最初提出某些氨基酸可以介导中枢神经系统中的突触传递时,遭到了强烈抵制。GABA 及其母体谷氨酸在大脑中都很丰富;但与谷氨酸不同的是,GABA 没有明显的代谢功能。到 20 世纪 50 年代末,人们的兴趣从电传递转向化学传递,这激发了对中枢递质的寻找。它与抑制甲壳类肌肉的脑提取物因子 I 的同一性,使 GABA 作为一种可能的抑制性递质引起了人们的关注。在最初的微电泳测试中,尽管 GABA 强烈抑制脊髓神经元,但这些作用被认为是“非特异性”的。谷氨酸(和其他酸性氨基酸)的强烈兴奋也得出了同样的结论。然而,它们对皮质神经元的强大效力和快速作用使其他作者相信这些内源性氨基酸可能是突触递质。这在一定程度上得到了证实,即 IPSP 和 GABA 都大大增加了 Cl()电导,它们的作用具有相似的反转电位。许多抗惊厥药被证明是 GABA 拮抗剂,到 20 世纪 70 年代,GABA 被广泛接受为 IPSP 的介质。谷氨酸的进展要慢得多。由于谷氨酸是在遥远的树突上产生的,EPSP 不能轻易与谷氨酸诱导的兴奋进行比较,而且由于缺乏阻断剂和各种谷氨酸受体,对特异性拮抗剂的寻找长期受到阻碍。这些困难逐渐被应用强大技术克服,如单通道记录、受体克隆以及新的药理学工具。

相似文献

1
When and why amino acids?何时以及为何使用氨基酸?
J Physiol. 2010 Jan 1;588(Pt 1):33-44. doi: 10.1113/jphysiol.2009.176990. Epub 2009 Oct 12.
9
Synaptic pharmacology in the turtle accessory optic system.龟副视系统中的突触药理学
Exp Brain Res. 2002 Dec;147(4):464-72. doi: 10.1007/s00221-002-1231-5. Epub 2002 Sep 25.

引用本文的文献

7
A half century of γ-aminobutyric acid.γ-氨基丁酸的半个世纪
Brain Neurosci Adv. 2019 Nov 27;3:2398212819858249. doi: 10.1177/2398212819858249. eCollection 2019 Jan-Dec.

本文引用的文献

2
Cation-chloride cotransporters and neuronal function.阳离子-氯离子共转运体与神经元功能
Neuron. 2009 Mar 26;61(6):820-38. doi: 10.1016/j.neuron.2009.03.003.
3
Synaptic AMPA receptor plasticity and behavior.突触AMPA受体可塑性与行为
Neuron. 2009 Feb 12;61(3):340-50. doi: 10.1016/j.neuron.2009.01.015.
10
Structure of glutamate receptors.谷氨酸受体的结构。
Curr Drug Targets. 2007 May;8(5):573-82. doi: 10.2174/138945007780618526.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验