Suppr超能文献

基因表达谱作为卵巢癌女性患者的预后标志物

Gene expression profiles as prognostic markers in women with ovarian cancer.

作者信息

Jochumsen Kirsten M, Tan Qihua, Høgdall Estrid V, Høgdall Claus, Kjaer Susanne K, Blaakaer Jan, Kruse Torben A, Mogensen Ole

机构信息

Department of Obstetrics and Gynecology, Odense University Hospital, Odense C, Denmark.

出版信息

Int J Gynecol Cancer. 2009 Oct;19(7):1205-13. doi: 10.1111/IGC.0b013e3181a3cf55.

Abstract

The purpose was to find a gene expression profile that could distinguish short-term from long-term survivors in our collection of serous epithelial ovarian carcinomas. Furthermore, it should be able to stratify in an external validation set. Such a classifier profile will take us a step forward toward investigations for more individualized therapies and the use of gene expression profiles in the clinical practice. RNA from tumor tissue from 43 Danish patients with serous epithelial ovarian carcinoma (11 International Federation of Gynecology and Obstetrics [FIGO] stage I/II, 32 FIGO stage III/IV) was analyzed using Affymetrix U133 plus 2.0 microarrays. A multistep statistical procedure was applied to the data to find the gene set that optimally split the patients into short-term and long-term survivors in a Kaplan-Meier plot. A 14-gene prognostic profile with the ability to distinguish short-term survivors (median overall survival of 32 months) from long-term survivors (median overall survival not yet reached after a median follow-up of 76 months) with a P value of 3.4 x 10 was found. The prognostic gene set was also able to distinguish short-term from long-term survival in patients with advanced disease. Furthermore, its ability to classify in an external validation set was demonstrated. The identified 14-gene prognostic profile was able to predict survival (short- vs long-term survival) with a strength that is better than any other prognostic factor in epithelial ovarian cancer including FIGO stage. This stratification method may form the basis of determinations for new therapeutic approaches, as patients with poor prognosis could obtain the biggest advantage from new treatment modalities.

摘要

目的是在我们收集的浆液性上皮性卵巢癌中找到一种能够区分短期和长期存活者的基因表达谱。此外,它应该能够在外部验证集中进行分层。这样一种分类器谱将使我们朝着更个体化治疗的研究以及基因表达谱在临床实践中的应用迈进一步。使用Affymetrix U133 plus 2.0微阵列分析了43例丹麦浆液性上皮性卵巢癌患者(11例国际妇产科联盟[FIGO] I/II期,32例FIGO III/IV期)肿瘤组织的RNA。对数据应用多步骤统计程序,以找到在Kaplan-Meier图中能将患者最佳地分为短期和长期存活者的基因集。发现了一个14基因的预后谱,其能够区分短期存活者(中位总生存期为32个月)和长期存活者(中位随访76个月后中位总生存期尚未达到),P值为3.4×10。该预后基因集也能够区分晚期疾病患者的短期和长期存活。此外,还证明了其在外部验证集中进行分类的能力。所确定的14基因预后谱能够预测生存(短期与长期生存),其强度优于上皮性卵巢癌中的任何其他预后因素,包括FIGO分期。这种分层方法可能构成新治疗方法确定的基础,因为预后不良的患者可能从新的治疗模式中获得最大益处。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验