Welsh John P, Patel Kedar G, Manthiram Karthish, Swartz James R
Department of Chemical Engineering, Stanford University, 381 North-South Mall, Stanford, CA 94305-5025, USA.
Biochem Biophys Res Commun. 2009 Nov 27;389(4):563-8. doi: 10.1016/j.bbrc.2009.09.006.
Gaussia luciferase (GLuc) from the copepod Gaussia princeps is both the smallest and brightest known luciferase. GLuc catalyzes the oxidation of coelenterazine to produce an intense blue light but with a very short emission half-life. We report mutated GLucs with much longer luminescence half-lives that retain the same initial intensity as the wild-type enzyme. The GLuc variants were produced using cell-free protein synthesis to provide high yields and rapid production of fully active product as well as simple non-natural amino acid substitution. By incorporating homopropargylglycine and attaching PEG using azide-alkyne click reactions, we also show that the four methionines in GLuc are surface accessible. The mutants provide a significantly improved reporter protein for both in vivo and in vitro studies, and the successful non-natural amino acid incorporation and PEG attachment indicate the feasibility of producing useful bioconjugates using click attachment reactions.
来自桡足类动物高斯伪镖水蚤的高斯荧光素酶(GLuc)是已知最小且最亮的荧光素酶。GLuc催化腔肠素氧化产生强烈的蓝光,但发射半衰期非常短。我们报道了具有更长发光半衰期的突变型GLuc,其保留了与野生型酶相同的初始强度。通过无细胞蛋白质合成产生GLuc变体,以提供高产率并快速生产完全活性的产物,以及进行简单的非天然氨基酸取代。通过掺入高炔丙基甘氨酸并使用叠氮化物-炔烃点击反应连接聚乙二醇(PEG),我们还表明GLuc中的四个甲硫氨酸可接近表面。这些突变体为体内和体外研究提供了显著改进的报告蛋白,并且成功的非天然氨基酸掺入和PEG连接表明使用点击连接反应生产有用生物共轭物的可行性。