Suppr超能文献

一种具有明亮发光的自杀和广泛紊乱的荧光素酶。

A suicidal and extensively disordered luciferase with a bright luminescence.

机构信息

The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark.

Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.

出版信息

Protein Sci. 2024 Aug;33(8):e5115. doi: 10.1002/pro.5115.

Abstract

Gaussia luciferase (GLuc) is one of the most luminescent luciferases known and is widely used as a reporter in biochemistry and cell biology. During catalysis, GLuc undergoes inactivation by irreversible covalent modification. The mechanism by which GLuc generates luminescence and how it becomes inactivated are however not known. Here, we show that GLuc unlike other enzymes has an extensively disordered structure with a minimal hydrophobic core and no apparent binding pocket for the main substrate, coelenterazine. From an alanine scan, we identified two Arg residues required for light production. These residues separated with an average of about 22 Å and a major structural rearrangement is required if they are to interact with the substrate simultaneously. We furthermore show that in addition to coelenterazine, GLuc also can oxidize furimazine, however, in this case without production of light. Both substrates result in the formation of adducts with the enzyme, which eventually leads to enzyme inactivation. Our results demonstrate that a rigid protein structure and substrate-binding site are no prerequisites for high enzymatic activity and specificity. In addition to the increased understanding of enzymes in general, the findings will facilitate future improvement of GLuc as a reporter luciferase.

摘要

海肾荧光素酶(GLuc)是已知最亮的荧光素酶之一,被广泛用作生物化学和细胞生物学中的报告基因。在催化过程中,GLuc 会发生不可逆的共价修饰失活。然而,GLuc 产生发光的机制以及它是如何失活的尚不清楚。在这里,我们表明,GLuc 与其他酶不同,它具有广泛的无规卷曲结构,只有最小的疏水性核心,没有明显的结合口袋来容纳主要底物腔肠素。通过丙氨酸扫描,我们确定了产生光所需的两个 Arg 残基。这两个残基平均间隔约 22Å,如果它们要同时与底物相互作用,则需要进行重大的结构重排。此外,我们还表明,GLuc 除了可以氧化腔肠素外,还可以氧化呋咱,但在这种情况下不会产生光。两种底物都会与酶形成加合物,最终导致酶失活。我们的研究结果表明,刚性的蛋白质结构和底物结合位点不是高酶活性和特异性的先决条件。除了增加对一般酶的理解外,这些发现还将有助于未来改进 GLuc 作为报告基因荧光素酶。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63d8/11255867/98f5731ffed9/PRO-33-e5115-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验