Jia Zhilong, Liu Ying, Guan Naiyang, Bo Xiaochen, Luo Zhigang, Barnes Michael R
Department of Chemistry and Biology, College of Science, National University of Defense Technology, Changsha, Hunan, 410073, People's Republic of China.
William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
BMC Genomics. 2016 May 27;17:414. doi: 10.1186/s12864-016-2737-8.
BACKGROUND: Drug repositioning, finding new indications for existing drugs, has gained much recent attention as a potentially efficient and economical strategy for accelerating new therapies into the clinic. Although improvement in the sensitivity of computational drug repositioning methods has identified numerous credible repositioning opportunities, few have been progressed. Arguably the "black box" nature of drug action in a new indication is one of the main blocks to progression, highlighting the need for methods that inform on the broader target mechanism in the disease context. RESULTS: We demonstrate that the analysis of co-expressed genes may be a critical first step towards illumination of both disease pathology and mode of drug action. We achieve this using a novel framework, co-expressed gene-set enrichment analysis (cogena) for co-expression analysis of gene expression signatures and gene set enrichment analysis of co-expressed genes. The cogena framework enables simultaneous, pathway driven, disease and drug repositioning analysis. Cogena can be used to illuminate coordinated changes within disease transcriptomes and identify drugs acting mechanistically within this framework. We illustrate this using a psoriatic skin transcriptome, as an exemplar, and recover two widely used Psoriasis drugs (Methotrexate and Ciclosporin) with distinct modes of action. Cogena out-performs the results of Connectivity Map and NFFinder webservers in similar disease transcriptome analyses. Furthermore, we investigated the literature support for the other top-ranked compounds to treat psoriasis and showed how the outputs of cogena analysis can contribute new insight to support the progression of drugs into the clinic. We have made cogena freely available within Bioconductor or https://github.com/zhilongjia/cogena . CONCLUSIONS: In conclusion, by targeting co-expressed genes within disease transcriptomes, cogena offers novel biological insight, which can be effectively harnessed for drug discovery and repositioning, allowing the grouping and prioritisation of drug repositioning candidates on the basis of putative mode of action.
背景:药物重新定位,即寻找现有药物的新适应症,作为一种将新疗法加速推进到临床的潜在高效且经济的策略,近来备受关注。尽管计算药物重新定位方法的灵敏度有所提高,已识别出众多可信的重新定位机会,但进展甚微。可以说,新适应症中药物作用的“黑箱”性质是进展的主要障碍之一,这凸显了需要有能在疾病背景下揭示更广泛靶标机制的方法。 结果:我们证明,共表达基因分析可能是阐明疾病病理学和药物作用模式的关键第一步。我们通过一个新颖的框架实现了这一点,即共表达基因集富集分析(cogena),用于基因表达特征的共表达分析和共表达基因的基因集富集分析。cogena框架能够进行同时的、由通路驱动的疾病和药物重新定位分析。Cogena可用于阐明疾病转录组内的协同变化,并识别在此框架内起作用的机制性药物。我们以银屑病皮肤转录组为例进行说明,找回了两种作用模式不同的广泛使用的银屑病药物(甲氨蝶呤和环孢素)。在类似的疾病转录组分析中,Cogena的表现优于连接性图谱和NFFinder网络服务器的结果。此外,我们调查了其他排名靠前的治疗银屑病化合物的文献支持情况,并展示了cogena分析的输出如何能提供新的见解以支持药物进入临床的进展。我们已在Bioconductor或https://github.com/zhilongjia/cogena上免费提供了cogena。 结论:总之,通过针对疾病转录组内的共表达基因,cogena提供了新的生物学见解,可有效地用于药物发现和重新定位,从而能够根据假定的作用模式对药物重新定位候选物进行分组和排序。
BMC Bioinformatics. 2020-6-5
BMC Bioinformatics. 2017-12-28
Pathog Dis. 2020-6-1
Methods Mol Biol. 2019
Brief Bioinform. 2025-7-2
Acta Neuropathol Commun. 2025-4-25
Comput Struct Biotechnol J. 2023-9-9
BMC Bioinformatics. 2023-5-24
Assay Drug Dev Technol. 2015
Nat Genet. 2015-6-29
Brief Bioinform. 2016-1
Mol Biosyst. 2015-3
Genome Med. 2014-12-2
Nucleic Acids Res. 2015-1
Nature. 2014-8-28