Suppr超能文献

用于基因调控网络非线性动力学模型定性模拟的计算框架。

A computational framework for qualitative simulation of nonlinear dynamical models of gene-regulatory networks.

机构信息

IMATI-Consiglio Nazionale delle Ricerche, via Ferrata 1, Pavia, Italy.

出版信息

BMC Bioinformatics. 2009 Oct 15;10 Suppl 12(Suppl 12):S14. doi: 10.1186/1471-2105-10-S12-S14.

Abstract

BACKGROUND

Due to the huge amount of information at genomic level made recently available by high-throughput experimental technologies, networks of regulatory interactions between genes and gene products, the so-called gene-regulatory networks, can be uncovered. Most networks of interest are quite intricate because of both the high dimension of interacting elements and the complexity of the kinds of interactions between them. Then, mathematical and computational modeling frameworks are a must to predict the network behavior in response to environmental stimuli. A specific class of Ordinary Differential Equations (ODE) has shown to be adequate to describe the essential features of the dynamics of gene-regulatory networks. But, deriving quantitative predictions of the network dynamics through the numerical simulation of such models is mostly impracticable as they are currently characterized by incomplete knowledge of biochemical reactions underlying regulatory interactions, and of numeric values of kinetic parameters.

RESULTS

This paper presents a computational framework for qualitative simulation of a class of ODE models, based on the assumption that gene regulation is threshold-dependent, i.e. only effective above or below a certain threshold. The simulation algorithm we propose assumes that threshold-dependent regulation mechanisms are modeled by continuous steep sigmoid functions, unlike other simulation tools that considerably simplifies the problem by approximating threshold-regulated response functions by step functions discontinuous in the thresholds. The algorithm results from the interplay between methods to deal with incomplete knowledge and to study phenomena that occur at different time-scales.

CONCLUSION

The work herein presented establishes the computational groundwork for a sound and a complete algorithm capable to capture the dynamical properties that depend only on the network structure and are invariant for ranges of values of kinetic parameters. At the current state of knowledge, the exploitation of such a tool is rather appropriate and useful to understand how specific activity patterns derive from given network structures, and what different types of dynamical behaviors are possible.

摘要

背景

由于高通量实验技术最近提供了大量基因组水平的信息,可以揭示基因和基因产物之间的调控相互作用网络,即所谓的基因调控网络。由于相互作用元素的高维性和它们之间相互作用的复杂性,大多数感兴趣的网络都非常复杂。然后,数学和计算建模框架是预测网络行为以响应环境刺激的必要条件。一类特定的常微分方程(ODE)已被证明足以描述基因调控网络动力学的基本特征。但是,通过对这些模型进行数值模拟来推导出网络动力学的定量预测,在很大程度上是不切实际的,因为它们目前对调控相互作用的生化反应以及动力学参数的数值值的了解并不完整。

结果

本文提出了一种基于假设基因调控是阈值依赖的,即仅在高于或低于某个阈值时才有效的一类 ODE 模型的定性模拟计算框架。我们提出的模拟算法假设阈值依赖的调节机制是由连续陡峭的 sigmoid 函数建模的,与其他模拟工具不同,后者通过在阈值处不连续的阶跃函数来大大简化问题,从而近似阈值调节响应函数。该算法是处理不完全知识和研究在不同时间尺度上发生的现象的方法相互作用的结果。

结论

本文提出的工作为建立一种可靠且完整的算法奠定了计算基础,该算法能够捕捉仅依赖于网络结构且对于动力学参数值范围不变的动态特性。在当前的知识状态下,利用这样的工具来理解特定的活动模式如何源自给定的网络结构,以及可能存在哪些不同类型的动态行为,是相当合适和有用的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ff4/2762063/3511029940cd/1471-2105-10-S12-S14-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验