IEEE/ACM Trans Comput Biol Bioinform. 2022 Mar-Apr;19(2):1050-1063. doi: 10.1109/TCBB.2020.3006920. Epub 2022 Apr 1.
Computational and mathematical models are a must for the in silico analysis or design of Gene Regulatory Networks (GRN)as they offer a theoretical context to deeply address biological regulation. We have proposed a framework where models of network dynamics are expressed through a class of nonlinear and temporal multiscale Ordinary Differential Equations (ODE). To find out models that disclose network structures underlying an observed or desired network behavior, and parameter values that enable the candidate models to reproduce such behavior, we follow a reasoning cycle that alternates procedures for model selection and parameter refinement. Plausible network models are first selected via qualitative simulation, and next their parameters are given quantitative values such that the ODE model solution reproduces the specified behavior. This paper gives algorithms to tackle the parameter refinement problem formulated as an optimization problem. We search, within the parameter space symbolically expressed, for the largest hypersphere whose points correspond to parameter values such that the ODE solution gives an instance of the given qualitative trajectory. Our approach overcomes the limitation of a previously proposed stochastic approach, namely computational load and very reduced scalability. Its applicability and effectiveness are demonstrated through two benchmark synthetic networks with different complexity.
计算和数学模型是进行基因调控网络(GRN)的计算机分析或设计的必备工具,因为它们为深入研究生物调控提供了理论背景。我们提出了一个框架,其中通过一类非线性和时间多尺度常微分方程(ODE)来表示网络动态模型。为了找出揭示观察到的或期望的网络行为背后的网络结构的模型,以及使候选模型能够再现这种行为的参数值,我们遵循一个推理循环,该循环交替进行模型选择和参数细化的过程。首先通过定性模拟选择合理的网络模型,然后为其参数赋予定量值,以使 ODE 模型解再现指定的行为。本文提出了一种算法来解决形式为优化问题的参数细化问题。我们在符号表示的参数空间中搜索,找到对应于参数值的最大超球体,使得 ODE 解给出给定定性轨迹的一个实例。我们的方法克服了之前提出的随机方法的局限性,即计算负载和非常有限的可扩展性。通过两个具有不同复杂性的基准合成网络证明了其适用性和有效性。