Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, 560012, India.
Department of Mathematical Sciences, Montana State University, Bozeman, MT, 59717, USA.
NPJ Syst Biol Appl. 2023 Jul 3;9(1):29. doi: 10.1038/s41540-023-00289-2.
Mathematical modeling of the emergent dynamics of gene regulatory networks (GRN) faces a double challenge of (a) dependence of model dynamics on parameters, and (b) lack of reliable experimentally determined parameters. In this paper we compare two complementary approaches for describing GRN dynamics across unknown parameters: (1) parameter sampling and resulting ensemble statistics used by RACIPE (RAndom CIrcuit PErturbation), and (2) use of rigorous analysis of combinatorial approximation of the ODE models by DSGRN (Dynamic Signatures Generated by Regulatory Networks). We find a very good agreement between RACIPE simulation and DSGRN predictions for four different 2- and 3-node networks typically observed in cellular decision making. This observation is remarkable since the DSGRN approach assumes that the Hill coefficients of the models are very high while RACIPE assumes the values in the range 1-6. Thus DSGRN parameter domains, explicitly defined by inequalities between systems parameters, are highly predictive of ODE model dynamics within a biologically reasonable range of parameters.
基因调控网络(GRN)涌现动力学的数学建模面临双重挑战:(a)模型动力学对参数的依赖性,以及(b)缺乏可靠的实验确定参数。在本文中,我们比较了两种描述跨未知参数的 GRN 动力学的互补方法:(1)RACIPE(随机电路扰动)使用的参数采样和由此产生的集合统计,以及(2)通过 DSGRN(由调控网络生成的动态特征)对 ODE 模型的组合逼近进行严格分析的使用。我们发现,对于在细胞决策中通常观察到的四个不同的 2 节点和 3 节点网络,RACIPE 模拟和 DSGRN 预测之间非常吻合。这一观察结果非常显著,因为 DSGRN 方法假设模型的 Hill 系数非常高,而 RACIPE 假设值在 1-6 范围内。因此,DSGRN 参数域通过系统参数之间的不等式明确定义,在生物学上合理的参数范围内高度预测 ODE 模型动力学。