Evolution du Plancton et PaleOceans, Station Biologique de Roscoff, CNRS UPMC UMR7144, 29682 Roscoff, France.
Genome Biol. 2009;10(10):R114. doi: 10.1186/gb-2009-10-10-r114. Epub 2009 Oct 15.
Eukaryotes are classified as either haplontic, diplontic, or haplo-diplontic, depending on which ploidy levels undergo mitotic cell division in the life cycle. Emiliania huxleyi is one of the most abundant phytoplankton species in the ocean, playing an important role in global carbon fluxes, and represents haptophytes, an enigmatic group of unicellular organisms that diverged early in eukaryotic evolution. This species is haplo-diplontic. Little is known about the haploid cells, but they have been hypothesized to allow persistence of the species between the yearly blooms of diploid cells. We sequenced over 38,000 expressed sequence tags from haploid and diploid E. huxleyi normalized cDNA libraries to identify genes involved in important processes specific to each life phase (2N calcification or 1N motility), and to better understand the haploid phase of this prominent haplo-diplontic organism.
The haploid and diploid transcriptomes showed a dramatic differentiation, with approximately 20% greater transcriptome richness in diploid cells than in haploid cells and only <or= 50% of transcripts estimated to be common between the two phases. The major functional category of transcripts differentiating haploids included signal transduction and motility genes. Diploid-specific transcripts included Ca2+, H+, and HCO3- pumps. Potential factors differentiating the transcriptomes included haploid-specific Myb transcription factor homologs and an unusual diploid-specific histone H4 homolog.
This study permitted the identification of genes likely involved in diploid-specific biomineralization, haploid-specific motility, and transcriptional control. Greater transcriptome richness in diploid cells suggests they may be more versatile for exploiting a diversity of rich environments whereas haploid cells are intrinsically more streamlined.
真核生物根据其在生命周期中经历有丝分裂细胞分裂的二倍体或单倍体水平,被分为单倍体、二倍体或单倍二倍体。Emiliania huxleyi 是海洋中最丰富的浮游植物物种之一,在全球碳通量中发挥着重要作用,代表了甲藻,这是一个在真核生物进化早期分化的神秘单细胞生物群。该物种是单倍二倍体。关于单倍体细胞知之甚少,但据推测,它们允许该物种在二倍体细胞每年开花之间持续存在。我们对单倍体和二倍体 E. huxleyi 的归一化 cDNA 文库进行了超过 38000 个表达序列标签测序,以鉴定涉及每个生命阶段(2N 钙化或 1N 运动)的重要过程的基因,并更好地了解该突出的单倍二倍体生物的单倍体阶段。
单倍体和二倍体转录组显示出明显的分化,二倍体细胞的转录组丰富度比单倍体细胞高约 20%,估计两个阶段之间共有<或= 50%的转录本。区分单倍体的主要功能类别包括信号转导和运动基因。二倍体特异性转录本包括 Ca2+、H+和 HCO3-泵。区分转录组的潜在因素包括单倍体特异性 Myb 转录因子同源物和异常的二倍体特异性组蛋白 H4 同源物。
这项研究允许鉴定可能参与二倍体特异性生物矿化、单倍体特异性运动和转录控制的基因。二倍体细胞的转录组丰富度更高,表明它们可能更具多样性,能够利用各种丰富的环境,而单倍体细胞则本质上更精简。