Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany.
Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, UK.
Nat Commun. 2023 Jun 23;14(1):3749. doi: 10.1038/s41467-023-39336-1.
Coccolithophores are globally abundant, calcifying microalgae that have profound effects on marine biogeochemical cycles, the climate, and life in the oceans. They are characterized by a cell wall of CaCO scales called coccoliths, which may contribute to their ecological success. The intricate morphologies of coccoliths are of interest for biomimetic materials synthesis. Despite the global impact of coccolithophore calcification, we know little about the molecular machinery underpinning coccolithophore biology. Working on the model Emiliania huxleyi, a globally distributed bloom-former, we deploy a range of proteomic strategies to identify coccolithogenesis-related proteins. These analyses are supported by a new genome, with gene models derived from long-read transcriptome sequencing, which revealed many novel proteins specific to the calcifying haptophytes. Our experiments provide insights into proteins involved in various aspects of coccolithogenesis. Our improved genome, complemented with transcriptomic and proteomic data, constitutes a new resource for investigating fundamental aspects of coccolithophore biology.
颗石藻是一种在全球范围内广泛存在的钙化微藻,对海洋生物地球化学循环、气候和海洋生物有着深远的影响。它们的特征是细胞壁由称为颗石的 CaCO3 鳞片组成,这可能有助于它们的生态成功。颗石藻的复杂形态引起了人们对仿生材料合成的兴趣。尽管颗石藻钙化具有全球性影响,但我们对支撑其生物学的分子机制知之甚少。我们以分布广泛的形成水华的模式生物 Emiliania huxleyi 为研究对象,采用一系列蛋白质组学策略来鉴定与颗石形成相关的蛋白质。这些分析得到了一个新基因组的支持,该基因组的基因模型源自长读转录组测序,揭示了许多专门针对钙化甲藻的新蛋白。我们的实验提供了对参与颗石形成各个方面的蛋白质的深入了解。我们改进的基因组,辅以转录组和蛋白质组数据,构成了研究颗石藻生物学基础方面的新资源。