文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用户研究比较了四种用于一维和二维数据集的不确定性可视化方法。

A user study to compare four uncertainty visualization methods for 1D and 2D datasets.

机构信息

Geosystems Research Insitute, High Performance Computing Collaboratory, Mississippi State University, MS, USA.

出版信息

IEEE Trans Vis Comput Graph. 2009 Nov-Dec;15(6):1209-18. doi: 10.1109/TVCG.2009.114.


DOI:10.1109/TVCG.2009.114
PMID:19834191
Abstract

Many techniques have been proposed to show uncertainty in data visualizations. However, very little is known about their effectiveness in conveying meaningful information. In this paper, we present a user study that evaluates the perception of uncertainty amongst four of the most commonly used techniques for visualizing uncertainty in one-dimensional and two-dimensional data. The techniques evaluated are traditional errorbars, scaled size of glyphs, color-mapping on glyphs, and color-mapping of uncertainty on the data surface. The study uses generated data that was designed to represent the systematic and random uncertainty components. Twenty-seven users performed two types of search tasks and two types of counting tasks on 1D and 2D datasets. The search tasks involved finding data points that were least or most uncertain. The counting tasks involved counting data features or uncertainty features. A 4x4 full-factorial ANOVA indicated a significant interaction between the techniques used and the type of tasks assigned for both datasets indicating that differences in performance between the four techniques depended on the type of task performed. Several one-way ANOVAs were computed to explore the simple main effects. Bonferronni's correction was used to control for the family-wise error rate for alpha-inflation. Although we did not find a consistent order among the four techniques for all the tasks, there are several findings from the study that we think are useful for uncertainty visualization design. We found a significant difference in user performance between searching for locations of high and searching for locations of low uncertainty. Errorbars consistently underperformed throughout the experiment. Scaling the size of glyphs and color-mapping of the surface performed reasonably well. The efficiency of most of these techniques were highly dependent on the tasks performed. We believe that these findings can be used in future uncertainty visualization design. In addition, the framework developed in this user study presents a structured approach to evaluate uncertainty visualization techniques, as well as provides a basis for future research in uncertainty visualization.

摘要

许多技术已被提出用于在数据可视化中展示不确定性。然而,对于这些技术在传达有意义信息方面的有效性,我们知之甚少。在本文中,我们进行了一项用户研究,评估了在一维和二维数据中可视化不确定性时最常用的四种技术中的不确定性感知。评估的技术包括传统的误差棒、字形大小的缩放、字形的颜色映射以及数据表面上的不确定性颜色映射。该研究使用生成的数据来代表系统和随机不确定性分量。二十七位用户在一维和二维数据集上执行了两种搜索任务和两种计数任务。搜索任务涉及找到不确定性最小或最大的数据点。计数任务涉及计数数据特征或不确定性特征。4x4 完全析因方差分析表明,在两个数据集上,使用的技术和分配的任务类型之间存在显著的交互作用,这表明四种技术之间的性能差异取决于执行的任务类型。进行了多次单向方差分析以探索简单的主要效应。使用 Bonferroni 校正来控制因 alpha 膨胀而导致的总体错误率。虽然我们没有在所有任务中找到四种技术的一致顺序,但从研究中我们发现了一些我们认为对不确定性可视化设计有用的发现。我们发现,在搜索高不确定性和搜索低不确定性位置的用户性能之间存在显著差异。误差棒在整个实验中表现始终不佳。字形大小的缩放和表面的颜色映射表现相当不错。这些技术的效率在很大程度上取决于执行的任务。我们相信这些发现可以用于未来的不确定性可视化设计。此外,本用户研究中开发的框架提供了一种评估不确定性可视化技术的结构化方法,并为未来的不确定性可视化研究提供了基础。

相似文献

[1]
A user study to compare four uncertainty visualization methods for 1D and 2D datasets.

IEEE Trans Vis Comput Graph. 2009

[2]
Comparing 2D vector field visualization methods: a user study.

IEEE Trans Vis Comput Graph. 2005

[3]
Comparing 3D vector field visualization methods: a user study.

IEEE Trans Vis Comput Graph. 2009

[4]
Evaluating the use of data transformation for information visualization.

IEEE Trans Vis Comput Graph. 2008

[5]
A spreadsheet approach to facilitate visualization of uncertainty in information.

IEEE Trans Vis Comput Graph. 2008

[6]
CareVis: integrated visualization of computerized protocols and temporal patient data.

Artif Intell Med. 2006-7

[7]
Using visual design experts in critique-based evaluation of 2D vector visualization methods.

IEEE Trans Vis Comput Graph. 2008

[8]
On the Way to New Horizons: Telemedicine in Oncology.

Oncologist. 1997

[9]
Subjective quantification of perceptual interactions among some 2D scientific visualization methods.

IEEE Trans Vis Comput Graph. 2006

[10]
Visualizing large-scale uncertainty in astrophysical data.

IEEE Trans Vis Comput Graph. 2007

引用本文的文献

[1]
Designing the Australian Cancer Atlas: visualizing geostatistical model uncertainty for multiple audiences.

J Am Med Inform Assoc. 2024-11-1

[2]
Uncertainty Visualization: Concepts, Methods, and Applications in Biological Data Visualization.

Front Bioinform. 2022-2-17

[3]
InterVisAR: An Interactive Visualization for Association Rule Search.

ACM BCB. 2016-10

[4]
A Structural Average of Labeled Merge Trees for Uncertainty Visualization.

IEEE Trans Vis Comput Graph. 2020-1

[5]
A review and outlook on visual analytics for uncertainties in functional magnetic resonance imaging.

Brain Inform. 2018-7-3

[6]
Effects of ensemble and summary displays on interpretations of geospatial uncertainty data.

Cogn Res Princ Implic. 2017

[7]
Tailoring the visual communication of climate projections for local adaptation practitioners in Germany and the UK.

Philos Trans A Math Phys Eng Sci. 2015-11-28

[8]
From Quantification to Visualization: A Taxonomy of Uncertainty Visualization Approaches.

IFIP Adv Inf Commun Technol. 2012

[9]
Task-Driven Evaluation of Aggregation in Time Series Visualization.

Proc SIGCHI Conf Hum Factor Comput Syst. 2014

[10]
GRACE: A visual comparison framework for integrated spatial and non-spatial geriatric data.

IEEE Trans Vis Comput Graph. 2013-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索