Suppr超能文献

自我报告的种族/族裔与退伍军人事务部电子病历中记录的种族/族裔之间的一致性。

Concordance between self-reported race/ethnicity and that recorded in a Veteran Affairs electronic medical record.

作者信息

Hamilton Natia S, Edelman David, Weinberger Morris, Jackson George L

机构信息

Center for Health Services Research in Primary Care, Durham Veterans Affairs Medical Center, USA.

出版信息

N C Med J. 2009 Jul-Aug;70(4):296-300.

Abstract

BACKGROUND

Using information from electronic health records (EHRs) to examine racial/ethnic health disparities is increasingly common. This study examines the degree of concordance between administratively recorded race/ethnicity and the criterion standard of self-reported race/ethnicity at a tertiary care Veterans Affairs Medical Center (VAMC) in North Carolina.

METHODS

We compared self-reported race among 204 respondents to a cross-sectional mailed survey of patients with diabetes conducted in 2006-2007 to the race/ethnicity recorded in the EHR. Concordance was defined as the percent agreement between self-reported and administratively-reported race.

RESULTS

The overall response rate to the survey was 68.9% (204 of 296). Of the 204 respondents, 32 (15.7%) reported a different race/ethnicity from the race/ethnicity reported in the EHR. Misclassification resulted from either the patient reporting a race/ethnicity and having the information missing in the EHR (9.3% of respondents) or the EHR having a different race/ethnicity listed than reported by the patient (6.3% of respondents).

LIMITATIONS

This study was conducted at one VAMC.

CONCLUSIONS

While we found misclassification of race/ethnicity in the EHR, the level of discordance is smaller than previously reported in the Veterans Health Administration. Despite this, efforts still need to be made to ensure correct information is included in the EHR.

摘要

背景

利用电子健康记录(EHRs)中的信息来研究种族/民族健康差异的情况日益普遍。本研究在北卡罗来纳州一家三级医疗退伍军人事务医疗中心(VAMC),考察行政记录的种族/民族与自我报告的种族/民族这一标准之间的一致程度。

方法

我们将2006 - 2007年对糖尿病患者进行的横断面邮寄调查中204名受访者自我报告的种族,与电子健康记录中记录的种族/民族进行了比较。一致性定义为自我报告和行政报告的种族之间的一致百分比。

结果

调查的总体回复率为68.9%(296人中的204人)。在这204名受访者中,32人(15.7%)报告的种族/民族与电子健康记录中报告的不同。错误分类是由于患者报告了种族/民族但电子健康记录中信息缺失(占受访者的9.3%),或者电子健康记录中列出的种族/民族与患者报告的不同(占受访者的6.3%)。

局限性

本研究是在一家退伍军人事务医疗中心进行的。

结论

虽然我们发现电子健康记录中存在种族/民族错误分类,但不一致程度比退伍军人健康管理局此前报告的要小。尽管如此,仍需努力确保电子健康记录中包含正确信息。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验