Suppr超能文献

从变分原理推导出的蠕虫链模型的力-伸长公式。

Force-extension formula for the worm-like chain model from a variational principle.

机构信息

Nanomechanics Group, School of Mathematics and Applied Statistics, University of Wollongong, Wollongong, NSW 2522, Australia.

出版信息

J Theor Biol. 2010 Feb 7;262(3):498-504. doi: 10.1016/j.jtbi.2009.10.009. Epub 2009 Oct 14.

Abstract

Stiff polymers, such as single-stranded DNA, unstructured RNA and cellulose, are all basically extremely long rods with relatively short repeating monomers. The simplest model for describing such stiff polymers is called the freely jointed chain model, which treats a molecule as a chain of perfectly rigid subunits of orientationally independent statistical segments, joined together by perfectly flexible hinges. A more realistic model that incorporates the entropic elasticity of a molecule, called the worm-like chain model, has been proposed by assuming that each monomer resists the bending force. Some force-extension formulae for the worm-like chain model have been previously found in terms of interpolation and numerical solutions resulting from statistical mechanics. In this paper, however, we adopt a variational principle to seek the minimum energy configuration of a stretched molecule by incorporating all the possible orientations of each monomer under thermal equilibrium, i.e., constant temperature. We determine a force-extension formula for the worm-like chain model analytically. We find that our formula suggests new terms such as the free energy and the cut-off force of a molecule, which define a clear transition from the entropic regime to the enthalpic regime and the fracture of the molecule, respectively. In addition, we predict two possible phase changes for a stretched molecule, i.e., from a super-helix to a soliton and then from a soliton to a vertical twisted line. We show theoretically that a molecule must undergo at least one phase change before it is fully stretched into its total contour length. This new formula is used to fit recent experimental data and shows a good agreement with some current literature that uses a statistical approach. Finally, an instability analysis is adopted to investigate the sensitivity of the new formula subject to small changes in temperature.

摘要

刚性聚合物,如单链 DNA、无规 RNA 和纤维素,基本上都是由相对较短的重复单体组成的非常长的棒。描述这种刚性聚合物最简单的模型称为自由连接链模型,它将分子视为由取向独立的统计段组成的完全刚性亚基的链,通过完全柔性铰链连接在一起。为了纳入分子的熵弹性,提出了一种更现实的模型,称为蠕虫链模型,它假设每个单体抵抗弯曲力。以前已经根据统计力学的插值和数值解,找到了蠕虫链模型的一些力-伸长公式。然而,在本文中,我们通过在热平衡下(即恒定温度)纳入每个单体的所有可能取向,采用变分原理来寻找拉伸分子的最小能量构象,从而寻求蠕虫链模型的力-伸长公式。我们以解析方式确定了蠕虫链模型的力-伸长公式。我们发现,我们的公式提出了新的术语,如自由能和分子的截止力,分别定义了从熵区到焓区的明确转变以及分子的断裂。此外,我们预测了拉伸分子的两种可能的相变,即从超螺旋到孤子,然后从孤子到垂直扭曲线。我们从理论上表明,分子在完全拉伸到其总轮廓长度之前,必须经历至少一次相变。这个新公式用于拟合最近的实验数据,并与使用统计方法的一些现有文献很好地吻合。最后,采用不稳定性分析研究了新公式对温度小变化的敏感性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验